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and 
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SUMMARY 

In this paper we study methods for estimating the absolute risk of an event cl in a time interval 
[t , t2), given that the individual is at risk at tl and given the presence of competing risks. We discuss 
some advantages of absolute risk for measuring the prognosis of an individual patient and some 
difficulties of interpretation for comparing two treatment groups. We also discuss the importance of 
the concept of absolute risk in evaluating public health measures to prevent disease. Variance 
calculations permit one to gauge the relative importance of random and systematic errors in estimating 
absolute risk. Efficiency calculations were also performed to determine how much precision is lost in 
estimating absolute risk with a nonparametric approach or with a flexible piecewise exponential 
model rather than a simple exponential model, and other calculations indicate the extent of bias that 
arises with the simple exponential model when that model is invalid. Such calculations suggest that 
the more flexible models will be useful in practice. Simulations confirm that asymptotic methods 
yield reliable variance estimates and confidence interval coverages in samples of practical size. 

1. Introduction 

A common outcome measurement in clinical trials of patients with surgically resected 
cancer is time to recurrence. Two treatments are often compared both in terms of their 
overall survival distributions and in terms of their time-to-recurrence distributions. Time- 
to-recurrence distributions are often computed by the procedure of Kaplan and Meier 
(1958), in which deaths from noncancer causes are treated as live withdrawals. Thus, time- 
to-recurrence distributions might be regarded as the "pure" distributions that would describe 
time to recurrence if no other risks were acting to kill the patient first. In deciding whether 
to give a toxic adjuvant therapy in the hope of preventing recurrence, it seems more 
appropriate to consider the absolute risk of recurrence, in the presence of competing risks, 
namely 

7r(t; X) = Ih(it; x)expL- {h1(v; x) + h2(v; x)} dvj dii, (1.) 

where h,(u; x) is the cause-specific hazard of interest (e.g., cancer recurrence, cl) for an 
individual with initial covariates x, and h2(u; x) is the cause-specific hazard for other risks 
(e.g., all noncancer causes of death, c2). One might be reluctant to try out a toxic cancer 
treatment in an elderly patient in whom h2 >> h, and for whom the absolute risk of 
recurrence in 5 years, say, ir(5; x), is small. 

Kev words: Absolute risk projection; Clinical trials; Cohort studies; Competing risks; Piecewise 
exponential model. 

813 



814 Biometrics, Septemnber 1990 

We shall consider the more general absolute risk of disease in [t1, t,) given survival 
without recurrence to t1, namely 

f,'2 hl (u; x)exp[-f8" {h1(v; x) + h2(v; x)} du] di-i 
(t1, t2; X) exp[ -f {h;(v; x) + h2(v; x)l dv] (1.2) 

This quantity might be useful in managing a patient who has already survived a time t1 by 
evaluating future absolute risk of recurrence in [t1, t2). 

The concept of absolute risk is not only useful in clinical settings but is also important 
in decisions affecting public health. For example, in order to estimate the absolute reduction 
in lung cancer incidence that might result from measures to reduce exposure to radon, one 
could categorize a general population into subgroups based on age, sex, smoking status, 
and current radon exposure levels and then estimate the absolute reduction in lung cancer 
incidence, in the presence of competing risks, that would result from lowering radon levels 
in each subgroup. This application would require the more general equation (1.2) because 
one would need to calculate future absolute risks for members of a subgroup who had 
already attained a given age. 

The quantity ir(t,, t2; x) is estimable in principle without any competing risk assumptions, 
because, as Prentice et al. (1978) emphasize, all functions of the cause-specific hazards are 
estimable. Indeed, if all patients in a cohort of age t1 are followed to death, ir(tI, t2; x) is 
just the expected proportion of them who are observed to have the event of interest before 
year t2. Although we shall discuss these ideas with reference to cancer recurrence, they 
apply to any risk of interest, cl. Chiang (1968) has used the term "crude" probability to 
describe ir(t; x), the probability of experiencing cl in the presence of competing risks, c2. 

To illustrate these ideas, we have computed estimates of the survival distribution, of the 
time-to-recurrence distribution, and of 1 - ir(t) for lung cancer patients (see Gail et al., 
1984) with resected T2NO squamous cell disease (Figure 1). The two survival distributions 
are calculated as in Kaplan and Meier (1958), and the locus 1 - 7ir(t) is estimated 
nonparametrically as described in Section 2. This locus is slightly above the curve for time 
to recurrence and the two would tend to coincide only if there were no deaths from 
noncancer causes. If the hazard from noncancer causes predominates, 1 - ir(t) will remain 
near 1. 

Survival Distribution 
Time to Recurrence Distribution 

0.9 C 1-n(t) 

0.8 - 

-LI 
0.7 - 
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0 100 200 300 400 500 600 700 800 900 1000 1100 

Days 

Figure 1. Overall survival, time to recurrence, and complement to 1 of the absolute risk of recurrence 
in patients with resected T2NO squamous cell lung cancer (from data in Gail et al., 1984). 
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The methods we use may be applied in the presence of loss to follow-up for which we 
make the usual competing risk assumption that those lost to follow-up are selected randomly 
from those at risk at the time of loss. Thus, competing risk assumptions are needed to 
account for loss to follow-up but not for deaths from competing causes, c2. 

In Section 2 we treat the case of a single stratum x. Parametric and nonparametric 
procedures are compared with respect to precision, and with respect to bias when the 
assumed parametric model fails to hold. The adequacy of large-sample valiance approxi- 
mations for ir(t) is evaluated for the exponential and piecewise exponential models and for 
the nonparametric approach. In Section 3 we extend these ideas to multiple covariates 
under the proportional hazards model and emphasize exponential and piecewise exponen- 
tial distributions. Analogous methods are given for the semiparametric approach in Appen- 
dix A.3. An example in Section 4 leads to a discussion of the relative importance of model 
misspecification and stochastic error in estimating ir(t,, t2; x). Coverage probabilities for 
ir(t,, t2; x) based on asymptotic theory are shown to have near nominal levels in simulations. 

2. Notation and Results for a Single Stratum X = x 

In this section we assume a homogeneous population with cause-specific hazard (cf. Prentice 
etal., 1978) 

h1(t) = lim z\-'Pr(c, in [t, t + A\) I neither cl nor c2 in [0, t)). 
A?O 

We define h2(t) similarly. We seek to estimate ir(t) in (1.1) or, more generally, ir(tI, t2) in 
(1.2), and we suppress the redundant notation x. For convenience we define G(t) = 

exp[-f' {h,(u) + h2(u)} du]. Then 

nt2 
ir(t, t2, = {G(t1)}-' J h1(u)G(u) dii. (2.1) 

We shall consider three models for h, and h2 as follows: 

(1) Exponential model. h,(t) = h, and h2(t) = h2 are constant. 
(2) Piecewise exponential model. h,(t) = hii and h2(t) = hnj are constant on time interval 

J'i = [ T1- I, Ti)for i= 1, 2,.. .,I. 
(3) Nonparametr-ic model. h,(t) and h2(t) are functions to be estimated nonparametri- 

cally. 

For the exponential model, h- d1/T and h2- d2/T are independent and have consistent 
variance estimates d1/T2 and d2/T2, where d, and d2 are the numbers of events observed 
and T is the corresponding total time on test (person-years exposure). The estimate of 7r 
under the exponential model is 

iie(ti, t2) = Ii(Ih + h2)-'[1 - exp{-(h, + h2)(t2 -t1)f, (2.2) 

with variance, obtained by the delta method (Rao, 1965, pp. 319-322), as explained in 
connection with Section A. 1 of the Appendix. 

For the piecewise exponential model, h1, and h21 are mutually independent and indepen- 
dent of h1j, h2' for all j i. Also, var(h,1) is consistently estimated by djI/T , in an extension 
of the previous notation. For simplicity, we only allow t1 and t, to take on values To = 0, 
TI, T2, .. ., TI. The estimate of i- obtained under the piecewise exponential model is then 

i2 A AA 

7rp(tl, t2) L h1 (hi1 + h2i)-'[1 - expl-(h1i + h?i)(Ti - Ti_)}]A(i), (2.3) 
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where i indexes the interval [tl, Ti), 12 indexes [Ti,-,, t2), A(i,) = 1, and 

A(i) = Ji expl-(hij + h2j)(Tj - Tj1l)} for i > il. 
J=il 

The variance of 7rp is obtained by the delta method as in Section A.2 of the Appendix. 
A nonparametric estimate 1.r of 7r under model 3 may be obtained as in Aalen (1978) 

by substituting G(t1-), the right-continuous Kaplan-Meier estimate of surviving both cl 
(recurrence) and c2 (death from noncancer causes) to time t1, into the denominator of (2.1) 
and by replacing the numerator by IG(t-)R-'(t), where R(t) is a left-continuous process 
defining the number at risk just before t. The summation is over distinct times in [t1, t2) at 
which events cl occur. We are assuming continuous survival data without ties. Exactly the 
same estimator is discussed by Aalen and Johansen (1978), Gray (1988), Matthews (1988), 
and Keiding and Andersen (1989). This estimate is used to calculate 1 - 7r(0, t) in 
Figure 1 for one stratum of lung cancer patients, who are described in Section 4. 
Kay and Schumacher (1983) give a similar estimate, but they were more interested in de- 
termining cause-specific hazard rates, h1(t), than in estimating absolute risks, ir(ti, t2). 
We derived var(7rn,) and an estimator var(7 np), which were needed for computations in 
Tables 1 and 2, from Theorem 2 of Aalen (1978). These derivations, which are available 
from the authors, are not presented because they may be obtained more directly from 
Theorem 4.3 of Aalen and Johansen (1978), as discussed by Keiding and Andersen (1989). 

To see how much precision is lost by using more general models when a simple 
exponential model, e, is correct, we considered: (a) a piecewise exponential model, p2, with 
hazards constant on the two intervals [0, t1) and [ti, oo), (b) a piecewise exponential model, 
p, with hazards constant on intervals of unit width, and (c) a nonparametric model, np. 
We studied the ratios var(7rnp)/var(ire), var(7rp)/var(7'e), and var(7rp2)/var(7re) for various 
values of h1, h2, and t2 with t, fixed at 1 (Table 1). For simplicity we assume no loss to 
follow-up. The exponential model is most efficient because it utilizes events outside the 
interval [t1, t2), as well as inside the interval. The piecewise model p2 does not use events 
occurring in [0, t,) directly. The piecewise model, p, which approximates the usual actuarial 

Table 1 
v var(irp)/var(-k,), var(-k,)/var(vr r), and var(7+k) /br various valuies of h1, h2, and t2 

with t fixed at Ia 

t, = 2 t, = 3 t, = 5 t, = 10 

k = .2 log 2 var(i+,)/var(i,) 4.086 2.855 2.393 2.299 
h, = log 2 var(-k,)/var(i,) 4.068 2.850 2:392 2.299 

var(-k2)/var(-k,) 2.297 2.297 2.297 2.297 
var(-k,) x 103 .4794 .9401 1.295 1.387 

h = .2 log 2 var(7-k,)/var(-k,) 5.463 3.129 2.018 1.482 
h2 = .2 log 2 var(2+p)/var(-.) 5.447 3.121 2.014 1.481 

var(_2k2)/var(Ak) 1.320 1.320 1.320 1.320 
var(i,) X 103 .2570 .7065 1.457 2.211 

k = log 2 var(2+,,)/var(-k,) 4.230 3.144 2.610 2.305 
h2 = .2 log 2 var(i-p)/var(-ke) 4.103 3.059 2.588 2.305 

var(-k,2)/var(i,) 2.297 2.297 2.297 2.297 
var(+e) X 103 1.353 1.602 1.390 1.387 

a Computations are based on two competing exponentials with hazards hl and h2 and no loss to follow-up. 
Expressions for var(ire), var(i+p2), var(irp), and var(7+n,) are given in the Appendix. 
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analysis with unit intervals, uses only events within [tl, t2) directly, as does the non- 
parametric model. The ratio var( 'p2)/var( 'e) = expl(h, + h2)t1}, because the expected 
number of patients available for estimating hazards on [t1, t2) is depleted by the survival 
fraction exp{-(h1 + h2)t1} in the model p2. This explains the constancy of the ratios 
var(7rp2)/var(7'e) in Table 1. It is perhaps surprising that 'p and ir. are nearly equally 
inefficient, even for small numbers of intervals. As the numbers of intervals increase, one 
would expect these estimators to have equivalent efficiency, and for ten intervals, the 
variances of 7rp and 1 agree to three significant figures. Relative to the exponential model, 
the models p and np are least efficient for small t?, because the interval of useable events 
[t1, t2) is short. 

Miller (1983) noted that Kaplan-Meier estimates had poor precision, compared to 
parametric models, and Gail and Byar (1986) found similar results for averages of survival 
curves obtained by direct standardization. However, those authors studied point estimates 
of the survival distribution and found that the efficiency of the Kaplan-Meier procedure 

Table 2 
Coverages of the 95% confidence intervalfor -x(1, t2) estimatedfrom 1,000 simullations 

t2= 2 t2= 3 t2= 5 t2 = 10 

Exponential casea 

h = .2 log 2 e .946 .951 .951 .953 
h2= log 2 p2 .950 .955 .956 .956 
h= gp2 .933* .958 .954 .931* 

np .942 .969* .959 .960 

h, = .2 log 2 e .963 .962 .961 .960 
h2 = .4 log 2 p2 .955 .952 .954 .956 

p .957 .958 .953 .958 
np .959 .966* .962 .969* 

h = .2 log 2 e .960 .960 .954 .957 
h, = .2 log 2 p2 .958 .959 .960 .963 

p .948 .951 .952 .952 
np .953 .956 .961 .955 

k = .4 log 2 e .961 .961 .960 .952 
h2 = .2 log 2 p2 .953 .952 .959 .948 

p .960 .951 .946 .946 
np .957 .957 .957 .956 

k = log 2 e .951 .949 .944 .936* 
h, = .2 log 2 p2 .945 .939 .915* .918* 

p .944 .934* .930* .924* 
np .951 .944 .926* .924* 

Weibull casea 

X = .2 log 2 e .972* .088* .019* .566* 
h2 = .2 log 2 p2 .211* .928* .958 .937 

p .956 .955 .939 .941 
np .954 .962 .947 .945 

X = .1 log 2 e .718* .979* .210* .556* 
h2 = .2 log 2 p2 .010* .4391 974* .955 

p .958 .959 .953 .962 

np .958 .960 .954 .964* 

* Asterisks indicate the coverage falls outside the interval [.937, .963], which should happen only 5% of the time 
by chance. 
a There was no loss to follow-up. Both hazards were constant as shown for the exponential case. For the Weibull 
case, the hazard for cl is 2 Xt, corresponding to shape parameter 2. 
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diminished for large values of time, whereas our results (Table 1) show that the relative 
performances of Kaplan-Meier and the piecewise exponential model improve with 
increasing t2. 

Simulations were carried out to determine whether reliable confidence intervals for ir 
could be obtained from the variance calculations in Sections A. 1 and A.2 of the Appendix 
for the parametric models and from the nonparametric estimate viar( np) mentioned above. 
These confidence intervals were computed from log 7ir ? 1.96v-ar(og ir)}1/2, which was 
then exponentiated to obtain a confidence interval for ir. However, the upper limit 1.0 was 
used whenever the previous upper limit exceeded 1.0. The log transform led to more nearly 
nominal coverage than the intervals -r ? 1.96{var (_k)} 1/2, and only the former intervals are 
presented. 

Simulations are reported both for the case of two independent exponential competing 
risks, for which all parametric models are valid, and for the case of competing Weibull (cl) 
and exponential (c2) risks (Table 2). Each simulation experiment represented 100 subjects 
and was repeated 1,000 times, and there was no loss to follow-up. For the exponential case 
we report 20 independent simulation studies corresponding to four values of t2 and five 
sets of values of hi and h2 (Table 2). For each experiment the four analyses from models 
e, p2, p, and np are correlated, as they are based on the same data. The piecewise exponential 
model p used intervals of width 1. The estimates of wr (not shown) were in good agreement 
with the theoretical values for all four models. The absolute bias was always less than 
6 x 10'. Furthermore, the estimates of var(7r) (not shown) were in good agreement with 
the empirical sample variances for all four models. The confidence intervals yielded reliable 
coverage (Table 2). The coverage was slightly less than nominal in only one case with the 
exponential model and two cases with the piecewise exponential model p2. With the 
piecewise exponential, p, the coverage was lower than nominal levels in five cases, although 
the absolute difference was always less than or equal to 2.6%. These results from asymptotic 
theory are good in view of the fact that the trials had only 100 individuals. Moreover, for 
the piecewise exponential model, p, some time intervals had very few expected events. The 
most extreme example for cause cl is the case to = 10, h, = .2 log 2, and ho = log 2, for 
which the tenth interval has only .01 expected event from cause cl and .03 expected event 
from c2. With the nonparametric approach, the coverage was greater than nominal in three 
cases and lower than nominal in two cases, and the largest absolute deviation from nominal 
coverage was 2.6%. 

The Weibull case in Table 2 allows us to assess the effect of model misspecification on 
the coverage probabilities. We have chosen a rather extreme Weibull shape parameter 
p = 2 to test the robustness of parametric methods that assume hi is constant or piecewise 
constant. Both models e and p2 exhibit seriously biased estimates of wr (data not shown) 
and consequent failure of coverage (Table 2). In contrast, both the piecewise exponential 
model, p, and nonparametric methods perform well. 

Taken together, the results of Tables 1 and 2 indicate that substantial efficiencies are 
achieved by using parametric models when sufficient data are available to validate these 
models, but that actuarial (p) or nonparametric methods should be used when little is 
known about the underlying distributions. 

3. Covariates Under the Proportional Hazards Model 

Under the proportional hazards model of Cox (1972), h1(t; x) = h0i(t)exp(BTx). We 
assume h2(t) does not depend on x. However, there is no essential difficulty in allowing 
h2(t; x) = h02(t)exp(_Tx), provided y is functionally independent of A9. In this formulation, 
x, ,B, and y are vectors. 
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If ho0(t; 0) and ho2(t; e) are specified up to a finite set of parameters, as for example in 
exponential, piecewise exponential, or Weibull models, then 7r is a function of the estimates 
0, ', and ,B and its variance may be obtained by Taylor series expansion from estimates of 
the covariance of (0, I, ,B). Variance estimates for 7r(tl, t2; x) are given for the exponential 
and piecewise exponential models in Sections A. 1 and A.2 of the Appendix. These results 
and confidence intervals computed from them will be applied to data from a lung cancer 
clinical trial in Section 4. 

Semiparametric estimates of r(tl, t2; x) are also available. Indeed, one such estimate is 

^(t1, t2; x) = {So1(t1)exp( Tx)S2(t)l}1 Soi(t)eP( S2(t)exp(# x) dAol(t), (3.1) 
'1 

where S2 is the Kaplan-Meier estimate for cause c2, and where 

dAol(t) = 1/E exp(BTx) if an event cl occurs at t, (3.2) 

and dAol(t) = 0 elsewhere. The summation in (3.2) is over individuals at risk at t. Finally, 
Sol(t) is the product of terms { 1 - dA01(t)} over distinct cl event times less than or equal to 
t, and ,B is the usual partial likelihood estimator for ,B. 

From the results in Tsiatis (1981) or in Andersen and Gill (1982), variance estimates 
for 7r in (3.1) can be obtained as outlined in Appendix A.3. 

4. An Example 

4.1 Data Description and Computation Qf 7r 

Gail et al. (1984) report recurrence and survival data from 392 patients with resected stage 
I non-small-cell carcinoma of the lung. Although one ordinarily thinks of lung cancer as 
having a high recurrence rate, there were some subsets of lung cancer patients for whom 
the absolute risk of recurrence was small and for whom toxic adjuvant chemotherapy might 
not be indicated. Gail et al. noted that the recurrence data seemed consistent with an 
exponential survival model with separate hazards for each of six strata defined by tumor 
stage and histology. Strata 1, 2, 3, 4, 5, and 6 correspond respectively to the findings TI NO 
squamous, TINI squamous, TINO nonsquamous, T2NO squamous, T2NO nonsquamous, 
and T1N1 nonsquamous. We refit the recurrence data, using an exponential model with 
hazard exp(,u+ Li=2 3ixi), and found estimates ,i = -9.1541, ,2 = -.0720, , = 1.2539, 
,4 = 1.5723, ,Bs = 1.8970, and,6 = 2.1332. Here x2, X3, X4, X5 , andX6 are dummy variables 
such that xi = 1 for stratum i and xi = 0 otherwise. The hazard is expressed in days-'. The 
risk of interest, cl, is recurrence, and deaths in patients with no previous evidence of 
recurrence ("noncancer" deaths) comprise the competing risks, c2. 

We computed the values of 7r and var(7r) as in Section 3, based on the assumption that 
h2(t) does not depend on x (Table 3). Three models were used for the hazards hol(t) and 
hJ(t), namely: (e) a simple exponential model; (p2) a piecewise exponential model with 
intervals gY = [0, 1 year) and I2 = [1 year, 5 years); and (p) a piecewise exponential model 
with five yearly intervals. Both p and p2 allow for the hazard to change following the first 
year. Semiparametric models based on equation (3.1) were not studied because the data 
were nearly exponential (Gail et al., 1984) and because models p and np perform in nearly 
identical fashion (Tables 1 and 2). Also shown in Table 3 is 7r*, the estimate obtained 
under an unsaturated covariate model with hazard exp(u* + f=1 0*xi*), where now 
x* = 1 if TINI, x* = 1 if T2N0, and x* = 1 if nonsquamous. Otherwise, x*, x*, and 
X* are zero. This model is additive in the effects of TN status and histology. 
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First we consider differences in estimates 7' for the three hazard models. In most cases, 
absolute differences in 7r among the exponential and piecewise exponential models are 
smaller than the standard deviations from these models; otherwise they are of the same 
magnitude. Thus if there are slight systematic deviations from exponentiality, their impact 
on estimates of wr is no greater than the random uncertainty. In estimating 7r(1, 2) and 
7r(1, 3) the differences among estimates are quite small. However, for 7r(1, 5) absolute 
differences as large as .6950 - .5782 = .1168 were observed, but, again, these must be 
interpreted in view of the standard error .1083 for 7r,( 1, 5). The standard deviations indicate 
that one loses precision in exchange for the greater generality of the piecewise exponential 
model, especially for 7rf(1, 5). 

Misspecification of the form of the nuisance hazard is only one of several possible types 
of model misspecification. Another possible misspecification would occur if a saturated 
covariate model such as that used above for calculation of 7r was required, but instead a 
nonsaturated model like that used to calculate 7r* was employed. In this case, 7r would 
usually be a biased estimate. Note that the quantities 7r* in Table 3 often differ from 
corresponding values of 7r by more than the various estimates of 7r differ from each other. 
Nonetheless, the values of 7r* are always within 2 standard deviations of the corresponding 
estimate 7r. For this example, twice the log-likelihood ratio for comparing the saturated and 
unsaturated models was 8.4 or more, with 2 degrees of freedom (P < .02), which indicates 
lack of fit for the unsaturated model. In this example, random variation, measured by the 
standard deviation of 7r, is comparable in magnitude to the systematic error that results 
from the use of an inappropriate unsaturated model for the effects of covariates. Other 

Table 3 
Estimates of +( 1 , t2) from the exponential model (e), the piecewise exponential model 

with unit intervals (p), and the piecewise exponential model with two intervals (p2) from data on 
lung cancer recurrence (c,) and death from noncancer causes (C2) in 392 patientsa 

7r(1, 2) 7r(l, 3) 7r(l, 5) 

e p2 p e p2 p e p2 p 

Stratum 1 ii .0373 .0341 .0389 .0721 .0664 .0602 .1348 .1257 .1682 
n = 65 SD(7) .0139 .0129 .0153 .0262 .0246 .0228 .0472 .0451 .0702 
di = 7 i* .0575 .0523 .0601 .1100 .1007 .0920 .2017 .1874 .2424 

Stratum 2 i .0347 .0319 .0369 .0672 .0620 .0572 .1260 .1177 .1603 
n = 20 SD(i) .0241 .0223 .0260 .0459 .0427 .0396 .0830 .0784 .1105 
di = 2 7r* .0823 .0744 .0867 .1554 .1418 .1317 .2781 .2581 .3332 

Stratum 3 ir .1246 .1131 .1283 .2302 .2111 .1934 .3952 .3700 .4685 
n = 98 SD(i) .0213 .0212 .0266 .0367 .0373 .0363 .0549 .0577 .1088 
di = 30 i* .1093 .0986 .1134 .2035 .1855 .1708 .3547 .3297 .4150 

Stratum 4 ir .1672 .1516 .1726 .3018 .2773 .2566 .4973 .4679 .5799 
n = 87 SD(i7) .0265 .0269 .0347 .0435 .0451 .0445 .0592 .0641 .1167 
di = 33 7r* .1354 .1221 .1412 .2486 .2269 .2108 .4224 .3940 .4912 

Stratum 5 ir .2236 .2022 .2306 .3911 .3598 .3363 .6108 .5782 .6950 
n = 110 SD(i) .0265 .0289 .0384 .0405 .0457 .0467 .0483 .0577 .1083 
di = 65 i* .2474 .2225 .2557 .4269 .3914 .3680 .6520 .6169 .7240 

Stratum 6 i .2741 .2463 .2795 .4659 .4275 .4010 .6940 .6588 .7699 
n = 12 SD(i) .0948 .0892 .1022 .1355 .1332 .1291 .1413 .1498 .1595 
di = 6 i* .1545 .1389 .1615 .2808 .2558 .2396 .4684 .4370 .5416 

a The estimate i * is obtained under the unsaturated covariate model in Section 4, and n is the sample size and d 
the number of recurrences (cl) per stratum. 
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types of misspecification, such as deviations from proportional hazards, should be investi- 
gated in particular cases to determine their possible importance compared to random error. 

Regardless of the analysis model, it appears that those with TINO squamous disease 
(stratum 1) have modest absolute risk of recurrence beyond 1 year (Table 3). Unreported 
calculations show small absolute risk of recurrence from the date of resection and could be 
used to justify conservative management of such patients. 

4.2 Simulations to Study Properties of the Estimate 7r and of Related Confidence Intervals 
for the Lung Cancer Example 

To check the validity of the estimation procedures and the coverage of confidence intervals 
for 7r derived from the three nuisance hazard models used in Section 4.1, we carried out 
1,000 simulations of the original clinical trial (Table 4) using the saturated exponential 
model in Section 4.1 to generate times to recurrence. Times to noncancer death, C2, were 
generated from an exponential distribution with hazard h2 = exp(- 9.3705), independent 
of covariates. This hazard was estimated from the original data on noncancer deaths. In 
each simulated clinical trial, 392 recurrence times and times to noncancer deaths were 
generated according to these distributions, and with the same covariate distribution. Patients 
were assumed to enter the trial uniformly over 3 years, independently of the covariates, 
and to be followed for an additional 2-year period. This accrual pattern closely resembles 
that of the original trial. The estimates of wr were in good agreement with the theoretical 
values for the three models, the absolute bias being always less than 10-2 (not shown). This 
result is not surprising because the simulated data truly follow exponential distributions. 
Furthermore, except for stratum 6 the estimates of var(7r) from the delta method were in 
good agreement with the sample variances (not shown), and the three models performed 
equally well in this respect. Likewise, the confidence intervals had nearly nominal coverage 
except in stratum 6 (Table 4). In the sixth stratum, which had only n = 12 patients, the 
confidence intervals for 7r(1, 5) had coverages ranging from .881 and .888 for the three 
models. We repeated this simulation and found coverages ranging from .907 to .920. 

Table 4 
The coverage and average width Qf the 95% confidence interval/fbr ir(ti, t2) estimatedffrom 

1,000 simllationsa 

7r(1, 2) 7r(1, 3) 7r(1, 5) 

e p2 p e p2 p e p2 p 

Coverage 
Stratum E(d,) 

1 7.7 .956 .959 .965* .966* .960 .961 .953 .957 .957 
2 2.2 .956 .952 .956 .950 .946 .950 .948 .954 .956 
3 34.7 .959 .961 .949 .945 .937 .942 .953 .950 .958 
4 39.1 .948 .954 .959 .955 .950 .954 .927* .937 .948 
5 61.3 .943 .948 .945 .956 .949 .950 .954 .949 .939 
6 7.7 .944 .945 .952 .931* .929* .928* .888* .888* .881* 

Average width (x 102) 

Stratum E(d,) 
1 7.7 5.5 5.6 6.1 10.4 10.6 10.7 18.7 19.0 19.9 
2 2.2 20.5 20.6 20.9 30.2 30.4 30.5 46.8 47.1 48.1 
3 34.7 7.9 8.4 10.0 13.5 14.4 15.1 20.1 21.4 24.9 
4 39.1 9.7 10.5 12.5 15.8 17.1 17.9 21.3 22.9 27.0 
5 61.3 9.9 11.2 14.0 15.1 17.1 18.2 17.9 20.3 25.1 
6 7.7 34.7 35.6 38.1 47.6 48.6 49.0 47.1 47.4 48.4 

a The simulations are described in Section 4.2, and the asterisk is defined in the footnote to Table 2. The term 
E(d1) is the expected number of recurrences, cl, in each stratum. These strata contained 65, 20, 98, 87, 110, and 
12 patients, respectively. 
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The loss of precision inherent in the more flexible models may be measured by the mean 
width of the 95% confidence intervals. All models yield extremely wide confidence intervals 
in stratum 6, which has only 12 subjects, and for 7+(1, 5) in stratum 2, which has only 2.2 
events, cl, on average. The estimate 7+P leads to appreciably wider confidence intervals than 
7re for estimates of r(l, 2) and 7r(l, 5) in strata 3, 4, and 5. The theoretical relative 
efficiencies, measured by var(7'e)/var(irp) and calculated from known parameters in the 
simulation experiment, are .51, .68, and .50, respectively, for 7r(1, 2), 7r(l, 3), and 7r(l, 5) 
in stratum 5, and this pattern is repeated in all strata, though the theoretical relative 
efficiency is never less than .50. The estimates 7rp2 were never less efficient than .77. These 
theoretical variance ratios are in good agreement with the squared ratios of average widths 
of confidence intervals in Table 4. 

5. Discussion 

The absolute risk, 7r, studied in this paper is the "crude" probability of experiencing the 
event of interest, cl, in the presence of competing risks, c2 (Chiang, 1968; Prentice et al., 
1978). As described in the Introduction, absolute risk may be more meaningful than the 
cause-specific survival curve S1(t) = exp(- f hI(u) dit) for evaluating some issues in clinical 
management and public health. Moreover, unlike SI(t), the pure survival curve, wr has a 
valid interpretation as a probability even when competing risks are not independent. 

The methods in this paper allow one to estimate 7r(tl, tU; x) for an individual characterized 
by covariates x and thus to make individualized absolute risk projections. One might wish 
to combine individualized estimates to obtain a direct adjusted value for the entire 
population, 

Wradj(tl , t2) = E f(x)i+(tl, t2; x), 
x 

where f(x) is the known proportion of individuals with covariate levels x in a reference 
population. This procedure would be analogous to the methods for direct adjustment of 
survival curves described by Murphy and Haywood (1981), Makuch (1982), and Chang, 
Gelman, and Pagano (1982). Taylor series estimates of cov(7r(tl, t2; x), 7r(tl, t2; x')) could 
be used to estimate the variance of 7'adj, as Gail and Byar (1986) did for direct adjusted 
survival curves. 

We do not recommend the use of r(0, t) alone as a means of testing for treatment effect. 
For examples, if a cancer treatment increases h2 but leaves h, unaffected, 7r(0, t) will 
diminish in the treated group, yet overall survival is reduced and cl-specific survival, Si(t), 
is unchanged. Instead, one should compare overall survival and estimates of the cause- 
specific survival curves S1 and S2 in the treated and untreated groups, as is common 
practice. Here S2(t) = exp(- f h2(u) dt). If h2 is not affected by treatment, the change in 
7r(O, t) is a more realistic gauge of treatment benefit than a comparison of S1 curves. If 
both h, and h2 are affected by treatment, 7r(0, t) still gives useful descriptive information 
for summanrzing the burden of recurrence in each of the treatment groups. Gray (1988) 
gives a formal test for comparing r(0, t) in two treatment groups and discusses the correct 
interpretation of such a test. 

The simulations we performed showed that asymptotic methods work well even for 
reasonably small sample sizes and for piecewise exponential models with as many as ten 
different hazard rates. The delta method leads to reliable estimates of the variance of 7r. 
Confidence intervals based on the log transformation had nearly nominal coverage, and 
this procedure was noticeably better than the confidence interval, 7 ? 1.96{var(7r)} 1/2. 
Asymptotic nonparametric theory also leads to reliable confidence intervals in samples of 
modest size. 

The calculations of var(7r) allow us to gauge the relative importance of random and 
systematic error in estimating 7r. The expectation of the absolute value of a normally 
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distributed error is about .798 times the standard deviation. Our example shows that 
systematic differences in estimating wr that arise from using unsaturated, rather than 
saturated, models for covariate effects tend to be larger than the expected random error, 
whereas differences that result from using exponential rather than piecewise exponential 
models tend to be smaller than expected random errors. 

Although we present estimates and variance calculations (Appendix A.3) for semipara- 
metric models with covariates, further numerical work is needed to investigate the small- 
sample properties of these procedures. There are certain advantages to the piecewise 
exponential model, which we have explored more thoroughly. Often only actuarial data on 
the numbers of events and numbers at risk in fixed time intervals are available, and one is 
quite willing to assume piecewise constant hazards on these intervals. The methods in this 
paper for model p may be used by estimating the total time on test Ti as the product of the 
width of interval -1i times the number who enter the interval less half the number who fail 
from any cause or are censored. For large cohorts, even when ungrouped time data are 
available, the piecewise exponential model is often preferred for ease of computation. 
Furthermore, nonparametric methods and actuarial methods (p) usually agree very well, 
as in Tables 1 and 2. 
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RESUMt 

Dans cet article, nous presentons des methodes d'estimation du risque absolu de survenue d'un 
evenement cl dans un intervalle de temps [t,, t2), pour un sujet a risque au temps t1 et en presence de 
risques comp6titifs. Nous discutons les avantages du risque absolu pour d6terminer le pronostic d'un 
sujet donn& et ses difficult&s d'interpretation dans la comparaison de deux groupes th&rapeutiques. 
Nous discutons 6galement de l'importance du concept de risque absolu dans 1'6valuation de mesures 
de prevention en sante publique. Des calculs de variance permettent d'evaluer l'importance relative 
des erreurs aleatoire et systematique dans l'estimation du risque absolu. Des calculs d'efficacite sont 
aussi presentes afin de determiner la perte de precision dans l'estimation du risque absolu avec une 
approche non param&trique ou avec le mod&le exponentiel par intervalle par rapport au mod&le 
exponentiel simple. D'autres calculs indiquent le biais qui resulte de l'utilisation du modele exponen- 
tiel simple quand celui-ci n'est pas valide. De tels calculs suggerent que les modeles plus generaux 
sont utiles en pratique. Des simulations confirment que les m6thodes asymptotiques conduisent a des 
estimateurs valides de la variance et a des intervalles de confiance ayant le recouvrement souhaite, 
ceci pour des echantillons de taille conforme a la pratique. 
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APPENDIX 

Variance Calciulations 

A. 1 Variance of e(ti, t2; x) Under the Proportional Hazards Model 

First note that ie(ti, t,; x) is given by (2.2) with hi replaced by hoIexp(BTx). From the delta method, 

(aie(X)N P aeX~ieX 
var(7e(ti, t2; X)) var(hlo0) + 2 E ( Acov (hol, 3j) 

aho i j=l ako I a dj 

+)j~1 

(8 ~ 
C)( 
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cOV((j, 
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(4)) 

var(hf) 

j=i k=li 8:j 8/ahk 

where 

're(X) h?lo I(exp(:Tx) )2 
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ah2 hoI eXp(TX) + h2 
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and 

aie(x) _ 
2 h(eXp(~TX))2 

-o I eXp(TX x)) (t+ - ti)xjexp{-(hoiexp(:x) + h2)(t2 t1)- , 

+ 0I h2exp(TX)) + 
(hoiexp(:Tx) + h )2 xt[l - exp{-(hoexp(@Tx) + h^)(t ) 

Here x is the p x 1 vector of covariates with jth component xj, ,B is the p x 1 vector of coefficients, 
variance and covariance terms for cause ci are obtained from the inverse of the observed information 
matrix, and var(h2) = d2/T . For a single stratum (Section 2), the terms involving derivatives 
with respect to ,B vanish and the remaining terms are the same except hol = hi and exp(,x) = 1. 

A.2 Variance of 7i-(t, t2; x) Under the Proportional Hazards Model 

Similarly, i+,(ti, t2; x) is given by (2.3), with hli replaced by ho!iexp( Tx), which we denote 
by hliexp(BTx). Then 

---1 '~~2 i tao-p(x)Vai+pw) i2 p tai(x) taip(x) 
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+ E E (cov(03, 13k) + E 

I ) var(h2i), 
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In these expressions 
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and 

h71exp(~TX))2 1- C(i) = he"p(PT1) +)h x[1 - exp{-(hiieXp(TX) + h2i)(Ti - Ti-,)f]A(i) E hlj(ry - rJ ,) 
h i exp(~~~~~~~~~~~~TX) + ~~~~~~~j=il 

fori> il. 

Other terms are defined in Section A.1 and Section 2. For a single stratum (Section 2), the 
terms involving derivatives with respect to ,B vanish and the remaining terms are the same except 
exp(ATX) = 1. 

A.3 Semiparametric Estimate of var{l(ti, t2; x)} 

First consider the numerator W of ir(ti, t,; x) in (3.1), and write 

1z2 
W-1 0 l t exp(~TX)) (t)Xp(@TX) d:Ao I (t ) '2Soi(t)eP JS2(t)exp(Tx) I 

12 

-LJi S2(t) - S2(}dlSl(t)exPOTX) -S () TX)} 

+ ,;,S2(t)d{S0(t)exP(OTX) S 
(t)exp(OTx)} + 2(,)d{S0 (t)xP)}1 

- -(I + II + III). 

Because the product of the first term and the square root of the cohort sample size converges in 
probability to zero, one obtains 

var(W4) = var(II) + var(III) + 2 cov(II, III) = var(II) + var(III), 

since the independence of the processes S2(t) and SoI(t)exP(OTX) implies cov(II, III) = 0. Further, 

var(III) = cF oF cov{S2(i), S2(u)}d{SIo(1)exP(OTX)Id{So(U)exP(OTX)I 

can be evaluated from the known covariance of the process 52(u), which is given in Breslow and 
Crowley (1974) and in Gill (1980, ?4.2). The range of integration for this integral is the set {(u, v): 
t I t2, t I v U t21. Furthermore, one obtains 

var(II) = varLj1 S2(t)d{Sol(t)exP(X)}1 

= varLS2(t2)exp{ -Ao1(t2)exp(,6Tx)} - S(t1)exp{-A01(t )exp(BTx)} 

- fs 12exp{-Ao1(t)exp(/-Tx)}dS2(t)1 

by integrating by parts and by replacing>Soi(t) by exp{-AoI(t)}. These variance terms can be computed 
using the joint distribution of {A01(t), } given in Tsiatis (1981) or in Andersen and Gill (1982) and 
the delta method. 

Similarly, one can compute the variance of the denominator U- So(t)exP(6TX)So2(t1) and the 
covariance between U and W. The variance of r(t , t,; x) = W/U follows by another application of 
the delta method. 
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