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Summary

Estimating relationships between multiple incomplete patient measurements requires
methods to cope with missing values. Multiple imputation is one approach to address
missing data by filling in plausible values for those that are missing. Multiple imputa-
tion procedures can be classified into two broad types: joint modeling (JM) and fully
conditional specification (FCS). JM fits a multivariate distribution for the entire set of
variables, but it may be complex to define and implement. FCS imputes missing data
variable-by-variable from a set of conditional distributions. In many studies, FCS is
easier to define and implement than JM, but it may be based on incompatible con-
ditional models. Imputation methods based on multilevel modeling show improved
operating characteristics when imputing longitudinal data, but they can be computa-
tionally intensive, especially when imputing multiple variables simultaneously. We
review current MI methods for incomplete longitudinal data and their implementa-
tion on widely accessible software. Using simulated data from the National Health
and Aging Trends Study, we compare their performance for monotone and inter-
mittent missing data patterns. Our simulations demonstrate that in a longitudinal
study with a limited number of repeated observations and time-varying variables,
FCS-Standard is a computationally efficient imputation method that is accurate and
precise for univariate single-level and multilevel regression models. When the analy-
ses comprise multivariate multilevel models, FCS-LMM-latent is a statistically valid
procedure with overall more accurate estimates, but it requires more intensive com-
putations. Imputation methods based on generalized linear multilevel models can
lead to biased subject-level variance estimates when the statistical analyses involve
hierarchical models.
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1 INTRODUCTION

Missing data are often inevitable in longitudinal studies. A primary reason is that non-response can occur at any time in the

study. Individuals’ responses may be missing because they have moved out of the area, missed an appointment, were too ill to

attend, or died. In studies involving annual surveys, missing data also occur when participants refuse to answer or do not know

the answer.

Commonly used statistically valid methods can be classified into three broad types: (1) likelihood and Bayesian methods; (2)

weighting methods; and (3) imputation methods.1 The likelihood and Bayesian methods define a model for the observed and

unobserved variables. Using computational techniques such as the EM algorithm2 or Data Augmentation,3 it provides estimates

for the estimands of interest. These methods may result in biased estimates when the model is mis-specified or when the missing

data mechanism is non-ignorable. Weighting is an alternative approach to handling missing data. This approach weights the

observed data to account for missing observations using the estimated probabilities of non-response.4–6 Weighting methods are

best suited for monotone missing data patterns and are commonly used when the missing variable is scalar. In contrast to the

former two methods, imputation methods explicitly "fill in" the missing values with plausible values. Single imputations have

been shown to result in sampling variance estimates that are too small.7 Multiple imputation procedures circumvent this issue by

replacing each missing value with a set of 𝐵 plausible values drawn from the predictive distribution of the missing data. Based

on these values, 𝐵 sets of complete datasets are generated. Each dataset is analyzed separately, and final estimates are obtained

using common combination rules.8

Although the idea behind multiple imputation seems simple, developing procedures to produce plausible values is more com-

plex. Multiple papers have summarized and compared possible procedures to impute scalar variables,9 multiple non-clustered

variables,10–13 and multiple continuous longitudinal variables.14–18 However, methods to impute mixed-type variables in longi-

tudinal studies are more limited and dispersed. Kalaycioglu et al19 compared three chained equations imputation approach,20 the

multivariate Normal imputation,11 and a Bayesian imputation approach to impute time-varying binary, categorical, skewed, and

normally distributed variables. Huque et al21 presented a comparison study with twelve currently available imputation methods

for longitudinal data with incomplete continuous and binary variables. Other studies compared imputation methods for contin-

uous and binary multilevel data,16,22–25 and multilevel categorical data26 in non-longitudinal settings. This manuscript reviews

available imputation methods for multiple variables of various types in longitudinal studies. Using simulations based on the

National Health and Aging Trend Study (NHATS),27 we compare the operating characteristics of different methods for handling

missing values in both outcomes and explanatory variables. Code in R28 for implementing all of the methods for the simulations

and the real-data example is provided.29
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The paper proceeds as follows. Section 2 introduces the multiple imputation approach. Sections 3 and 4 review the fully con-

ditional specification (FCS) imputation procedures and the joint modeling (JM) imputation procedures, respectively. Section

5 describes the simulation analyses and presents the results of the simulations. An application for estimating the associations

between hospital admissions, physical, cognitive abilities, and skilled nursing facilities admissions by different imputation

methods is demonstrated in Section 6. Section 7 provides a discussion and conclusions.

2 MULTIPLE IMPUTATION FOR LONGITUDINAL STUDIES

2.1 Notations and assumptions

Let 𝐘 = {𝑦𝑖𝑗𝑘} represent a multivariate longitudinal dataset such that 𝑦𝑖𝑗𝑘 is the value of variable 𝐘𝑗 , 𝑗 ∈ {1,… , 𝐽}, for subject

𝑖 ∈ {1,… , 𝑛} at time 𝑡𝑘, 𝑘 ∈ {1,… , 𝐾}. The data 𝐘 can be saved in either a wide or long matrix format. In wide format, 𝐘 is

stored as a 𝑛 × 𝐽𝐾 matrix with each row representing an individual and each column corresponding to variable 𝐘𝑗 measured

at time 𝑡𝑘, denoted by 𝐘𝑗𝑘. In long format, 𝐘 is a 𝑛𝐾 × (𝐽 + 1) matrix, with the last column describing the time point that the

observation is recorded and the other columns are the 𝐽 variables. For simplicity, we define 𝐘𝑙, 𝑙 ∈ {1,… , 𝐿}, to be a column

in either the wide or long format. In wide format, 𝐿 = 𝐽𝐾 and 𝐘𝑙 is a vector of size 𝑛. In long format, 𝐿 = 𝐽 and 𝐘𝑙 is a vector

of size 𝑛𝐾 . Tables 1 and 2 present an example of data arranged in wide format and long format, respectively, with 𝐾 = 4 time

points and 𝐽 = 3 variables. Question marks represent missing values.

Let 𝐌 = {𝑚𝑖𝑗𝑘} be a matrix of indicators, such that 𝑚𝑖𝑗𝑘 = 0 when 𝑦𝑖𝑗𝑘 is observed and 𝑚𝑖𝑗𝑘 = 1, otherwise. In addition,

let 𝐘𝑜𝑏𝑠
𝑙 and 𝐘𝑚𝑖𝑠

𝑙 be the observed (𝑚𝑖𝑗𝑘 = 0) and the missing (𝑚𝑖𝑗𝑘 = 1) parts of 𝐘𝑙, respectively. Monotone and intermittent

missing data are two missing data patterns that are commonly observed in longitudinal data.7 Monotone missing data occurs

when subjects drop out from the study and do not return for follow-up appointments. If subject 𝑖 drops out from the study at time

point 𝑡𝑘, then 𝑚𝑖𝑗𝑘∗ = 1, ∀𝑗 ∈ {1, ..., 𝐽} and 𝑘∗ ≥ 𝑘. Intermittent missing data usually occur when subjects skip an interview or

refuse to answer certain questions. In such case, 𝑚𝑖𝑗𝑘 = 1 for any 𝑗 ∈ {1, ..., 𝐽} and 𝑘 ∈ {1,… , 𝐾}. Imputation of 𝐘𝑚𝑖𝑠
𝑙 involves

modeling the relationships between 𝐘𝑙, complete covariates 𝐗 = {𝑥𝑖𝑝}, 𝑝 ∈ {1, .., 𝑃 }, and all the other 𝐿 − 1 variables, 𝐘−𝑙.

To obtain valid inferences when data comprise missing values, one should consider the missing data mechanism,7

𝑃 (𝐌|𝐘,𝐗,𝝓), where 𝝓 are the parameters governing this distribution. In many software packages, the default method for

missing values is the list-wise deletion procedure, which assumes that the data are missing completely at random (MCAR).

MCAR implies that the missing data mechanism is unrelated to missing and observed values, 𝑃 (𝐌|𝐘,𝐗,𝝓) = 𝑃 (𝐌|𝝓). In

aging research, older adults may be too ill to complete the study, and assuming MCAR can lead to biased estimates. One way

to relax the MCAR assumption is to assume that missing data depends only on observed values, also know as missing at ran-

dom (MAR), 𝑃 (𝐌|𝐘,𝐗,𝝓) = 𝑃 (𝐌|𝐘𝑜𝑏𝑠,𝐗,𝝓), where 𝐘𝑜𝑏𝑠 = {𝐘𝑜𝑏𝑠
𝑙 }. Under MAR, a variety of analytic strategies to address
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missing data can be considered. The third type of missing data mechanism is not missing at random (NMAR). Under NMAR,

missing data depends on both the observed and unobserved values. Because missing data depends on unobserved values, meth-

ods to handle missing data under NMAR rely on assumptions that are not verifiable from the observed data. Thus, many authors

emphasized the need for sensitivity analysis to assess inferences under different plausible assumptions.1,30 This paper describes

multiple imputation methods that assume that the missing data mechanism is MAR, and it examines their performance when

these methods are applied to multiple incomplete longitudinal variables of different types.

2.2 Multiple imputation for multivariate data

Assuming MAR, a multiple imputation (MI) procedure generates 𝐵 plausible values for each missing value resulting in 𝐵

complete datasets. Each complete dataset is analyzed separately, and point and interval estimates are obtained using common

combination rules. The procedure for creating imputations for all partially observed variables in 𝐘 consists of three steps:

1. Specify the model 𝑃 (𝐘1,… ,𝐘𝐿|𝜽,𝐗) and prior distributions of parameters 𝑃 (𝜽) and calculate the posterior distribution

of 𝜽 based on 𝐘𝑜𝑏𝑠;

2. Draw a value 𝜽∗ from its posterior distribution 𝑃 (𝜽|𝐘𝑜𝑏𝑠,𝐗);

3. Draw imputations 𝐘∗
1,… ,𝐘∗

𝐿 from the conditional posterior predictive distribution of 𝐘𝑚𝑖𝑠 given 𝐘𝑜𝑏𝑠, 𝜽∗, and 𝐗,

𝑃 (𝐘𝑚𝑖𝑠
|𝐘𝑜𝑏𝑠,𝜽∗,𝐗).

After the imputation for all incomplete variables is completed, researchers can conduct any statistical analysis that they would

have performed on a complete dataset. Using common combination rules, an estimate for a scalar parameter of interest, 𝛽, is

derived as the average of 𝛽(𝑢), 𝑢 ∈ {1,… , 𝐵}, which is the estimate of 𝛽 within complete dataset 𝑢. And its sampling variance,

var(𝛽), is estimated by summing the average sampling variances within imputation and the variance between imputations8.

Formally,

𝛽 = 1
𝐵

𝐵
∑

𝑢=1
𝛽(𝑢), var(𝛽) = 1

𝐵

𝐵
∑

𝑢=1
𝑈𝐵 + (1 + 1

𝐵
)𝑊𝐵 , where 𝑈𝐵 =

𝐵
∑

𝑢=1
̂var(𝛽(𝑢)),𝑊𝐵 = 1

𝐵 − 1

𝐵
∑

𝑢=1
(𝛽(𝑢) − 𝛽)2. (2.1)

Two main strategies for specifying a distribution of all incomplete variables have been proposed: joint modeling (JM)

and fully conditional specification (FCS).1 The JM approach defines a multivariate distribution for all incomplete variables,

𝑃 (𝐘1,… ,𝐘𝐿|𝜽,𝐗). The FCS approach specifies a set of univariate conditional distributions for each incomplete variable given

the other variables, {𝑃 (𝐘𝑙|𝜽𝑙,𝐘−𝑙,𝐗)}. Compared to the JM approach, the FCS approach provides more flexibility for imputing

different types of variables, but it may suffer from theoretical limitations, because the joint distribution based on the different

conditional models may not exist.13
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Under either the FCS or JM strategy, the imputation models used to create 𝐘∗
𝑙 depend on the data format. With long format,

multilevel models are commonly used as imputation models, where the variance at the subject level captures the correlation

between repeated measurements.31–33 In wide format data, single-level models are specified to impute an incomplete variable

at a specific time point. The correlation between the repeated measurements of an incomplete variable is accounted for by

adjusting for its values measured at all the other time points as constant effects.34 This approach assumes an unstructured

correlation structure between the repeated measurements of the incomplete variables. While a wide format can be used when

the same observation is recorded for the same unit over time, it may be impractical when the same observation is recorded for

different units, but units are grouped within clusters. The imputation methods using wide format data should generally be used

for balanced longitudinal data in which information on all individuals is recorded over similar intervals. When individuals’

reporting is recorded over different time intervals, special care should be given to the time between reports.

3 IMPUTATION BY FULLY CONDITIONAL SPECIFICATIONS

The FCS approach is also referred to multivariate imputation by chained equations (MICE). MICE iterates through sampling

from the conditional posterior distributions of model parameters,𝑃 (𝜽𝑙|𝐘𝑜𝑏𝑠
𝑙 ,𝐘−𝑙,𝐗), and sampling from the conditional posterior

predictive distributions 𝑃 (𝐘𝑚𝑖𝑠
𝑙 |𝐘𝑜𝑏𝑠

𝑙 ,𝐘−𝑙,𝐗,𝜽∗
𝑙 ). Formally, the 𝑡-th iteration of MICE involves sampling

𝜽∗(𝑡)
1 ∼ 𝑃 (𝜽1|𝐘𝑜𝑏𝑠

1 ,𝐘(𝑡−1)
−1 ,𝐗),

𝐘∗(𝑡)
1 ∼ 𝑃 (𝐘1|𝐘𝑜𝑏𝑠

1 ,𝐘(𝑡−1)
−1 ,𝐗,𝜽∗(𝑡)

1 ),

⋮

𝜽∗(𝑡)
𝐿 ∼ 𝑃 (𝜽𝐿|𝐘𝑜𝑏𝑠

𝐿 ,𝐘(𝑡)
−𝐿,𝐗),

𝐘∗(𝑡)
𝐿 ∼ 𝑃 (𝐘𝐿|𝐘𝑜𝑏𝑠

𝐿 ,𝐘(𝑡)
−𝐿,𝐗,𝜽

∗(𝑡)
𝐿 ).

(3.1)

Because the conditional models in MICE may not represent a joint distribution, there are no theoretically supported methods

to assess convergence. One possible method to assess convergence is by examining whether the imputation of each variable

has converged. For example, by examining the convergence of a summary statistic that utilizes the imputed values in each

incomplete variable over multiple chains.35 The MICE algorithm is implemented in the mice package36 in R, where researchers

specify a set of univariate imputation models for each incomplete variable. Other available software for implementing the MICE

algorithm include IVEware,37 PROC MCMC in SASwith FCS statement. In all of these implementations, FCS model specifications

commonly depend on the data format.
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3.1 FCS using wide format data

For wide format longitudinal data, imputation models treat repeated measurements of an incomplete variable 𝐘𝑗 at time 𝑡𝑘 as

𝐾 distinct variables, {𝐘𝑗𝑘; 𝑘 ∈ {1, ..., 𝐾}}. If 𝐘𝑗 contains missing values at and after time 𝑡𝑘, then variables {𝐘𝑗𝑡; ∀𝑡 ≥ 𝑘}

are incomplete variables. To impute a missing variable 𝐘𝑗𝑘, the imputer specifies a linear regression model or a generalized

linear model where 𝐘𝑗𝑘 is the dependent variable, and 𝐗, the variables {𝐘𝑗𝑡; ∀𝑡 ≠ 𝑘} and all the other variables at all time

points {𝐘𝑗𝑡; ∀𝑗 ≠ 𝑗, 𝑡 ∈ {1, ..., 𝐾}} are the independent variables. Another method for imputing incomplete continuous and

count variables is the predictive mean matching (PMM) procedure.4 PMM is a semi-parametric method that imputes data using

observed values, making it less sensitive to model mis-specification than purely parametric methods.38 For count variables with

large number of zeros, the zero-inflated Poisson and the zero-inflated Negative-Binomial models can be used.39 These models are

implemented in the countimp package.40 The application of MICE to wide data format has been referred to as FCS-Standard21

or as imputation by chained equations with fixed effects regression models (ICE-FS).19

As the number of waves in longitudinal studies increases, FCS-Standard can result in numerical instabilities because of the lack

of identification that arises from specifying many explanatory variables in the conditional models. Nevalainen et al41 proposed

to impute variables recorded at time 𝑡𝑘 only with variables that are recorded within (𝑡𝑘 − 𝛿, 𝑡𝑘 + 𝛿) time window. This procedure

assumes that a partially recorded variable observed at time 𝑡𝑘 is independent from variables recorded at time 𝑡𝑘± (𝛿+ 𝜖) (𝜖 > 0)

conditional on variables recorded at time 𝑡𝑘 ± 𝛿. This reduces the number of covariates used within each conditional model.

Additional details of this FCS method are provided in Welch et al.42

3.2 FCS– Multilevel linear model

When data are saved in long format, multilevel linear models have been proposed as conditional imputation models for contin-

uous variables. The first level of the model describes the repeated observations of subjects across time, and it is nested within

a second-level, which is subject-level information. Formally, to impute the missing observation of a continuous variable 𝐘𝑙 at

time point 𝑘 for the 𝑖-th subject, the following multilevel linear model is used,

𝑦𝑖𝑙𝑘 = 𝐗𝑇
𝑖𝑘𝜷 𝑙 + 𝐙𝑇𝑖𝑘𝐛𝑖 + 𝑒𝑖, 𝐛𝑖 ∼ 𝑁𝑞(0, 𝑉𝑏), 𝑒𝑖 ∼ 𝑁(0, 𝜎2𝑒 ), (3.2)

where 𝐗𝑖𝑘 and 𝐙𝑖𝑘 are 𝑝×1 vector of covariates and 𝑞×1 vector of subject-level covariates, respectively, and 𝑉𝑏 is an unstructured

covariance matrix of the subject-level effects. Both 𝐗 and 𝐙 may comprise complete and other incomplete variables. Parameters

𝜷 𝑙 are regression coefficients corresponding to covariates 𝐗, and 𝐛𝑖 correspond to subject-level variations in covariates 𝐙.

Model (3.2) assumes a common conditional variance 𝜎2𝑒 across all subjects. Applying MICE with Model (3.2) involves sampling

𝜽∗
𝑙 = (𝜷∗

𝑙 , 𝑉
∗
𝑏 , 𝜎

2
𝑒
∗), subject-level effects 𝐛∗𝑖 , and imputation values 𝑦∗𝑖𝑙𝑘. Commonly, conjugate prior distributions are assumed

for 𝜽∗
𝑙 . With continuous incomplete variables, a multivariate Gaussian prior distribution for 𝜷 𝑙, an Inverse-Wishart distribution
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for 𝑉𝑏, and an Inverse-Gamma distribution for 𝜎2𝑒 are assumed. Samples of 𝐛𝑖 can be drawn from its conditional posterior

distribution 𝑁(𝜇𝑏𝑖,Ψ𝑏𝑖), with 𝜇𝑏𝑖 = 𝑉𝑏𝐙𝑇𝑖 (𝐙𝑖𝑉𝑏𝐙
𝑇
𝑖 + 𝜎2𝑒 𝐈𝐾 )

−1(𝐲𝑖𝑙 −𝐗𝑇
𝑖 𝜷 𝑙) and Ψ𝑏𝑖 = 𝑉𝑏 − 𝑉𝑏𝐙𝑇𝑖 (𝐙𝑖𝑉𝑏𝐙

𝑇
𝑖 + 𝜎2𝑒 𝐈𝐾 )

−1𝐙𝑖𝑉𝑏, where

𝐲𝑖𝑙 = (𝑦𝑖𝑙1, ..., 𝑦𝑖𝑙𝐾 )𝑇 is the responses of subject 𝑖measured at all𝐾 time points and 𝐈𝐾 denotes a𝐾 ×𝐾 identity matrix. Imputed

values of 𝑦∗𝑖𝑙𝑘 are sampled from Model (3.2) given 𝜽∗
𝑙 and 𝐛∗𝑖 . The sampling procedure relies on a MCMC algorithm, which can

be computationally burdensome because many samples are required for the chain to converge to its equilibrium distribution.43

A possible approximation procedure samples 𝜽∗
𝑙 from their large sample Normal approximation and 𝐛∗𝑖 from 𝑁(𝜇𝑏𝑖 ,Ψ𝑏𝑖).

16,25

To impute discrete variables, one approach is to sample from multilevel linear models and round the imputed continuous

values to the nearest valid discrete values. However, this rounding step can result in biased estimates.44 To address this, Yucel et

al45 have proposed a calibration method that is similar to posterior predictive checks in Bayesian analysis46 to improve imputed

rounded values.

3.3 FCS– Multilevel linear model with latent variables

Another approach for imputing binary and categorical variables is to sample from a multilevel linear model with latent vari-

ables.47,48 For a binary variable 𝐘𝑙, this model assumes that there is a latent Normal variable 𝐘̃𝑙, such that 𝑦𝑖𝑙𝑘 = 1 if 𝑦̃𝑖𝑙𝑘 > 0,

and 𝑦𝑖𝑙𝑘 = 0 otherwise. The latent variable is assumed to follow a multilevel linear model. This representation is equivalent to

assuming that 𝑦𝑖𝑙𝑘 follows a multilevel probit model. Formally,

Φ−1(𝑃 (𝑦𝑖𝑙𝑘 = 1|𝐗𝑖𝑘,𝐛𝑖,𝜽𝑙, 𝝉)) = 𝑦̃𝑖𝑙𝑘 = 𝐗𝑇
𝑖𝑘𝜷 𝑙 + 𝐙𝑇𝑖𝑘𝐛𝑖 + 𝑒𝑖, 𝐛𝑖 ∼ 𝑁𝑞(0, 𝑉𝑏), 𝑒𝑖 ∼ 𝑁(0, 1), (3.3)

where Φ−1 is the inverse cumulative distribution function (CDF) of the standard Normal distribution. The sampling procedure

for drawing imputations from Model (3.3) is the same as the procedure for Model (3.2), which can be implemented by the

function mice.impute.2l.jomo in the micemd R package.

For ordinal categorical variables 𝐘𝑙 with 𝐻 > 2 levels, the latent variable imputation model is based on a cumulative probit

model. The model assumes that 𝐘𝑙 is determined by a latent Normal variable 𝐘̃𝑙 partitioned by 𝐻 − 1 threshold parameters

𝝉 = {𝜏ℎ}, ℎ ∈ {1, ...,𝐻}, such that 𝑦𝑖𝑙 = ℎ, if 𝜏ℎ−1 < 𝑦̃𝑖𝑙 < 𝜏ℎ (𝜏0 = −∞, 𝜏𝐻 = ∞). In addition, the model assumes that the

latent variable 𝑌𝑙 follows a multilevel linear model as Model (3.3). Formally, a cumulative probit model of 𝐘𝑙 is defined as

Φ−1(𝑃 (𝑦𝑖𝑙𝑘 ≤ ℎ|𝐗𝑖𝑘,𝐛𝑖,𝜽𝑙)) = Φ−1(𝑃 (𝑦̃𝑖𝑙𝑘 < 𝜏ℎ|𝐗𝑖𝑘,𝐛𝑖,𝜽𝑙)) = 𝜏ℎ − (𝐗𝑇
𝑖𝑘𝜷 𝑙 + 𝐙𝑇𝑖𝑘𝐛𝑖). (3.4)

The sampling procedure at iteration 𝑡 starts with updating 𝝉 (𝑡) ∼ 𝑁(𝝉|𝐘𝑙, 𝐘̃(𝑡−1),𝜽(𝑡−1)
𝑙 ,𝐛(𝑡−1)𝑖 ) followed by sampling 𝐘̃𝑙 ∼

𝑇𝑁(𝐘̃𝑙|𝐘, 𝝉 (𝑡),𝜽
(𝑡−1)
𝑙 ,𝐛(𝑡−1)𝑖 ) (a truncated Normal distribution) for all subjects, where 𝝉 (𝑡) are the truncation parameters at iteration

𝑡, and 𝜽(𝑡−1)
𝑙 = (𝜷 (𝑡−1)

𝑙 , 𝑉 (𝑡−1)
𝑏 )𝑇 and 𝐛(𝑡−1)𝑖 are the sample of 𝜽𝑙 = (𝜷 𝑙, 𝑉𝑏)𝑇 and 𝐛𝑖 at iteration 𝑡 − 1, respectively. Samples

of the parameters 𝜽(𝑡)
𝑙 are drawn from its conditional posterior distribution 𝑃 (𝜽𝑙|𝐘𝑙, 𝐘̃

(𝑡)
𝑙 , 𝝉

(𝑡),𝐛(𝑡−1)𝑖 ) and 𝐛(𝑡)𝑖 are drawn from
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𝑃 (𝐛𝑖|𝐘𝑙, 𝐘̃
(𝑡)
𝑙 , 𝝉

(𝑡),𝜽(𝑡)
𝑙 ). The conjugate prior distributions that are used for Model (3.3) are commonly specified for 𝜽𝑙 and 𝐛𝑖.

Additional technical details are provided in Enders et al.48

The multilevel multinomial probit model49 can be used to impute a nominal categorical variable 𝐘𝑙 with 𝐻𝑙 categories. This

model expands 𝐘𝑙 into 𝐻𝑙 binary variables 𝐘ℎ
𝑙 , ℎ ∈ {1, ...,𝐻𝑙}, that indicate whether 𝑦𝑖𝑙 = ℎ for subject 𝑖. An underlying latent

Normal variable 𝐘̃ℎ
𝑙 corresponding to 𝐘ℎ

𝑙 is defined by the probability of 𝑦ℎ𝑖𝑙 = 1. If 𝑦̃ℎ𝑖𝑙 is greater than 𝑦̃ℎ∗𝑖𝑙 for all ℎ∗ ≠ ℎ, then

𝑦ℎ𝑖𝑙 = 1 and 𝑦𝑖𝑙 = ℎ. For identifiability purposes, a multivariate linear multilevel model is assumed for the first 𝐻𝑙 − 1 latent

variables, such that 𝐛𝑖 ∼ 𝑀𝑉𝑁(0, 𝑉𝑏) and the within-subject variance Σ𝑒 is the identity matrix. The sampling procedure is

similar to Model (3.3), except that 𝐘̃ℎ
𝑙 are generated by an accept-reject algorithm.47 These models for categorical variables

using latent Normal variables are implemented in the software Blimp.50 We refer to the multilevel linear models with latent

variables as FCS-LMM-latent.

3.4 FCS– Multilevel generalized linear model

The multilevel generalized linear models are a flexible approach to model skewed or non-normally distributed variables. These

models are also commonly referred to as generalized linear mixed models (GLMM). Assuming that an incomplete variable 𝐘𝑙

conditional on item-level covariates 𝐗 and 𝐙 has an exponential family probability density function or probability mass function.

A GLMM is defined as

𝑔(𝐸(𝑦𝑖𝑙𝑘|𝐗𝑖𝑘,𝐙𝑖𝑘,𝐛𝑖,𝜽𝑙)) = 𝐗𝑇
𝑖𝑘𝜷 + 𝐙𝑇𝑖𝑘𝐛𝑖, 𝐛𝑖 ∼ 𝑁𝑞(0, 𝑉𝑏), (3.5)

where 𝑔(⋅) is a function linking the expected value of response 𝑦𝑖𝑙𝑘 to linear predictors. Sampling from the posterior distribution

of 𝑃 (𝜽𝑙|𝐗,𝐙,𝐘𝑙) can be implemented using MCMC. The latent multilevel variable model in Section 3.3 can be viewed as

Model (3.5) with a probit link function. The probit model can perform well for binary and categorical variable, but may not be

suitable for skewed or count variables. A different commonly used link function is the logit link for binary or the log-link for

count variables. Compared to the probit link, sampling from 𝑃 (𝐛𝑖|𝐲𝑖,𝐗𝑖,𝜽𝑙) with the logit or log link functions can be more

complex. A possible approximation can be obtained by sampling 𝐛𝑖 from its marginal posterior distribution𝑁(0,Ψ𝑏), where Ψ𝑏

is estimated by the REML23 or the Fisher scoring method.16 Using GLMM models for imputation of binary and count missing

variables are implemented in the micemd package in R. Availability of software that implements multilevel generalized linear

models using the log-Normal or Gamma likelihoods for incomplete skewed continuous data are limited. Throughout, we refer

to this method as FCS-GLMM.
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4 IMPUTATION BY JOINT MODELING

4.1 JM– General location model

The JM approach specifies a multivariate distribution for all incomplete variables. A multivariate Normal distribution is often

used when the data are arranged in wide format and consist of only continuous variables.14,17 For a mixture of continuous and

discrete variables, the general location model is proposed as a possible imputation model.11 This model describes the joint

distribution of 𝐘 = (𝐖,𝐂) in terms of a marginal distribution for all discrete variables, 𝐖 = (𝐖1, ...,𝐖𝑆1
), and a conditional

distribution of all continuous variables 𝐂 = (𝐂1, ...,𝐂𝑆2
) given the discrete variables, where 𝑆1 + 𝑆2 = 𝐿(= 𝐽𝐾). The general

location model is defined as

𝑃 (𝐖,𝐂) = 𝑃 (𝐖)𝑃 (𝐂|𝐖)

=𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁, 𝜋𝑑) ⋅𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑑 ,Σ).
(4.1)

The marginal distribution 𝑃 (𝐖) of 𝑆1 discrete variables is modeled by a multinomial distribution on the cell counts of a 𝑆1-

dimensional contingency table with 𝐷 =
∏𝑆1

𝑙=1𝐻𝑙 cells and cell probabilities 𝜋𝑑 , 𝑑 ∈ {1, .., 𝐷}, where 𝐻𝑙 is the number of

distinct levels of variable 𝐖𝑙. Within each cell of the contingency table, continuous variables 𝐂 follow a multivariate Normal

distribution with mean 𝜇𝑑 and covariance matrix Σ𝑑 . In finite samples, as the number of categorical variables increases, some

cells may be empty. This may lead to unstable estimation.51 In these situations, the restricted general location model can be

applied. The restricted model assumes that a contingency table cell counts follow a log-linear model, which is fitted by a subset

of 𝐖𝑙, 𝑙 ∈ {1, ..., 𝑆1}, and possibly their interactions. Continuous variables are modeled by a multivariate linear regression

model with the categorical variables as the independent variables. Another possible limitation of both the general location model

and the restricted general location model is their reliance on the multivariate Normal distributions for continuous 𝐘𝑙. This may

result in inaccurate imputation when 𝐘𝑙 is skewed or multi-modal. The general location model and the restricted location model

are implemented in the mix package52 in R. Throughout, we refer to the general location model as JM-GL.

4.2 JM– Multivariate multilevel linear model

When 𝐘 comprise only continuous variables and is in a long format, a possible joint model for imputing 𝐘 is the multivariate

linear multilevel model. Let 𝐲𝑖𝑘 = (𝑦𝑖1𝑘, ..., 𝑦𝑖𝐿𝑘)𝑇 be a column vector of 𝐿 continuous responses of the 𝑖-th subject measured at

time point 𝑘. The multivariate multilevel linear model (MLMM) is

𝐲𝑖𝑘 = (𝐈𝐿 ⊗ 𝐗𝑇
𝑖𝑘)𝜷 + (𝐈𝐿 ⊗ 𝐙𝑇𝑖𝑘)𝐛𝑖 + 𝐞𝑖,

𝐛𝑖 ∼ 𝑁(0, 𝑉𝑏), 𝐞𝑖 ∼ 𝑁(0,Σ𝑒),
(4.2)
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where the column vector 𝜷 has 𝑝𝐿 elements and column vector 𝐛𝑖 has 𝑞𝐿 elements. The symbol ⊗ is the Kronecker product.

Schafer and Yucel17 proposed a MCMC procedure to sample 𝐛𝑖, 𝜽, and 𝐘𝑚𝑖𝑠 jointly. It assumed that Σ ∼ Inv-Wishart(𝜈1,Λ1),

𝑉𝑏 ∼ Inv-Wishart(𝜈2,Λ2), and an improper uniform density over 𝑃𝐿 for 𝜷. This model is implemented in R package pan.53

4.3 JM-Multivariate multilevel linear model with latent variables

For imputations of both continuous and categorical variables, a multivariate multilevel linear model (MLMM) can be used to

model latent Normal variables that correspond to each of the categorical variables together with other continuous variables.

Formally, a MLMM assumes that a set of incomplete continuous variables, 𝐲(𝑐)𝑖𝑘 = (𝑦(𝑐)𝑖1𝑘, ..., 𝑦
(𝑐)
𝑖𝐶𝑘)

𝑇 , and a set of latent variables

𝐲̃(𝑤)𝑖𝑘 = (𝑦̃(𝑤)𝑖1𝑘 , ..., 𝑦̃
(𝑤)
𝑖𝑊 𝑘)

𝑇 of categorical variables 𝐲(𝑤)𝑖𝑘 = (𝑦(𝑤)𝑖1𝑘 , ..., 𝑦
(𝑤)
𝑖𝑊 𝑘)

𝑇 are distributed as

𝐲(𝑐)𝑖𝑘 = (𝐈𝐶 ⊗ 𝐗𝑇
𝑖𝑘)𝜷𝑐 + (𝐈𝐶 ⊗ 𝐙𝑇𝑖𝑘)𝐛𝑐𝑖 + 𝐞𝑐𝑖,

𝐲̃(𝑤)𝑖𝑘 = Φ−1(𝑃 (𝐲(𝑤)𝑖𝑘 = 1)) = (𝐈⊗ 𝐗𝑇
𝑖𝑘)𝜷𝑤 + (𝐈𝑊 ⊗ 𝐙𝑇𝑖𝑘)𝐛𝑤𝑖 + 𝐞𝑤𝑖,

𝐛𝑖 = (𝐛𝑐𝑖,𝐛𝑤𝑖)𝑇 ∼ 𝑁(0, 𝑉𝑏), 𝐞𝑖 = (𝐞𝑐𝑖, 𝐞𝑤𝑖)𝑇 ∼ 𝑁(0,Σ𝑒),where Σ𝑒 =

⎛

⎜

⎜

⎜

⎝

𝜎2𝑒 𝐈𝐶 𝑐𝑜𝑣(𝐞𝑐 , 𝐞𝑤)

𝑐𝑜𝑣(𝐞𝑐 , 𝐞𝑤) 𝐈𝑊

⎞

⎟

⎟

⎟

⎠

.

(4.3)

Under this model, a vector stacking the latent variables 𝐲̃(𝑤) and the continuous variables 𝐲(𝑐) follows a multivariate Normal

distribution, where 𝑉𝑏 is an unstructured covariance matrix of the subject-level effects, and the covariance matrix Σ𝑒 captures the

associations between the two sets of variables. The imputation algorithm is similar to sampling from the Model (4.2). However,

Σ𝑒 can not be sampled from the Inverse-Wishart distribution. Instead, the elements of Σ𝑒 should be updated individually using

a Metropolis-Hastings procedure. Detailed descriptions of the imputation algorithm are provided in Carpenter and Kenward54

chapters 4-5. We refer to this model as JM-MLMM-latent and it is implemented in the jomo package in R55 and the REALCOM

program in MATLAB.56

4.4 JM– Multivariate generalized multilevel linear model

Extending the FCS-GLMM to its JM version is an another approach for handling mixed-type incomplete variables. Let 𝐲𝑖 =

{𝐲𝑖1, ..., 𝐲𝑖𝐿} be a 𝐾 × 𝐿 response matrix of subject 𝑖, which consists of different types of variables. We assume a multivariate

generalized linear mixed model (MGLMM) for 𝑃 (𝐘1, ...,𝐘𝑙|𝜽) defined as

𝑝(𝐲𝑖1, ..., 𝐲𝑖𝐿|𝜽) = ∫

𝐿
∏

𝑙=1
𝑝𝑙(𝐲𝑖𝑙|𝐛𝑖𝑙,𝜽𝑙)𝑝𝑏(𝐛𝑖|𝑉𝑏)𝑑𝐛𝑖, (4.4)

where 𝑝𝑙(⋅) are density functions, 𝐛𝑖 = (𝐛𝑖1, ...,𝐛𝑖𝐿)𝑇 is a vector of subject-level effects which follows a multivariate Normal

distribution with mean zero and covariance matrix 𝑉𝑏. The Model (4.4) links a set of univariate generalized linear multilevel

models by introducing correlations between the variance components of the subject-level effects. The model assumes that the
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𝐘𝑙s are independent conditional on 𝐛𝑖 and 𝐗. We refer to this model as JM-MGLMM. For example, a shared-random intercepts

model with two outcomes (𝐿 = 2) in Equation (4.4) is

𝐸(𝑦𝑖1𝑘|𝐛𝑖0,𝐗𝑖𝑘, 𝛽01) = 𝑔−11 (𝛽01 + 𝑏𝑖10 + 𝛽1𝐗𝑖𝑘),

𝐸(𝑦𝑖2𝑘|𝐛𝑖0,𝐗𝑖𝑘, 𝛽02) = 𝑔−12 (𝛽02 + 𝑏𝑖20 + 𝛽2𝐗𝑖𝑘),

𝐛𝑖0 = (𝑏𝑖10, 𝑏𝑖20) ∼ 𝑁2(𝟎, 𝑉𝑏), 𝑉𝑏 =
⎛

⎜

⎜

⎜

⎝

𝜎21 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎22

⎞

⎟

⎟

⎟

⎠

,

(4.5)

where 𝑔1 and 𝑔2 are link functions for outcomes 𝐘1 and 𝐘2, respectively, and the latent correlation of outcomes at the subject-

level is identified by 𝜌. A possible extension of Model (4.5) involves adding random slopes in 𝐸(𝑦𝑖1𝑘|𝐛𝑖0) and 𝐸(𝑦𝑖2𝑘|𝐛𝑖0).

Including all of the covariates as subject-level random slopes in 𝐛𝑖 = (𝑏𝑖10, ..., 𝑏𝑖1𝑝, ..., 𝑏𝑖𝐿0, ..., 𝑏𝑖𝐿𝑝) would increase the dimension

of 𝑉𝑏 to (𝐿 × (1 + 𝑝))2. To complete the Bayesian model, diffused prior distributions can be used. Specifically, 𝛽𝑝 ∼ 𝑁(0, 100),

𝑉𝑏 ∼ Inverse-Wishart(𝐈𝑞 , 𝑞) where 𝑞 is the cardinality of 𝐛𝑖. Sampling from posterior distributions of the parameters can be

implemented using the JAGS software57, which requires the users to specify both the prior distributions and the likelihood

functions. We have provided a code example on the GitHub website.

5 SIMULATIONS

The National Health and Aging Trend Study (NHATS) collects information on a nationally representative sample of Medicare

beneficiaries ages 65 and older. Beginning in 2011, annual interviews are conducted and detailed information on a broad range

of variables related to sociodemographic factors, physical, cognitive capacity, and health outcomes are collected. We use the

NHATS data collected from 2011 to 2014 (rounds 1-4) and select a set of variables including four incomplete longitudinal

variables of varying types: an indicator of whether a person had an overnight hospital stay, a person’s body mass index (BMI),

comorbidity index, and the count of devices paid to assist with daily activities during the past year (paid assistive devices). The

comorbidity index is defined as a count of 10 chronic conditions, including heart disease (e.g., angina or congestive heart failure),

hypertension, arthritis, osteoporosis, diabetes, lung disease, Alzheimer’s disease, and related dementia, cancer, and whether

they experienced a heart attack or a stroke in the past. The number of paid assistive devices (ranges from 0-9) includes the

following aids: vision aids, hearing aid, cane, walker, wheelchair, scooters, grabbers, special dress items, and adapted utensils.

Almost 98% of the missing values resulted from loss to follow-up. Patients’ information collected at the first interview is used

as covariates for imputation and analysis, including age, gender, self-rated health, an indicator for whether participants take

prescribed medicines, and an indicator for whether participants or their spouse/partner have any medical bills that are being paid

off over time. Our goal is to estimate the associations between the comorbidity index, BMI, the paid assistive devices, and the

hospital stay status after adjustment for baseline variables.
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We design a simulation study to evaluate the operating characteristics of different imputation methods described in Sections

3 and 4. Our simulations are based on 5309 participants that were observed for 4 all rounds, and we simulate different missing

data patterns.

5.1 Missing data mechanism and missing data patterns

In the simulation, we assume that the missing data mechanism is MAR for the monotone missing data pattern. In longitudinal

studies with many covariates, it is reasonable to believe that 𝑃 (𝑚𝑖𝑗𝑘|𝐗𝑖, 𝑌𝑖1,… , 𝑌𝑖𝐿) would depend on at least one missing 𝑌𝑖𝐿

value for some 𝑖, where 𝐘 is recorded in a wide format. Thus, for intermittent missing data, we assume an NMAR missing data

mechanism. We simulate both missing data patterns on the wide-formatted NHATS data composed of only the completed cases.

Missing data indicators are sampled from the Bernoulli distribution with the event probabilities predicted by models estimated

from the original NHATS data.

To simulate an intermittent missing data pattern, we generate the missing indicators 𝑚𝑖𝑗𝑘 = 1 for each of the incomplete

variables independently. For subject 𝑖 at round 𝑘 ∈ {2, 3, 4}, the probability of 𝑌𝑖𝑗𝑘 being missing is

𝑃 (𝑚𝑖𝑗𝑘 = 1|𝐘𝑖,𝐗𝑖) = logit−1(𝛼∗0𝑗𝑘 +
𝐽
∑

𝑗=1

𝑘−1
∑

𝑘=1
𝛼̂∗𝑗𝑘𝑦𝑖𝑗𝑘 +

𝑃
∑

𝑝=1
𝜓̂𝑗𝑝𝑥𝑖𝑝), (5.1)

where the covariates include all of the time-varying variables prior to round 𝑘 and time-invariant variables. We set 𝛼∗0𝑗𝑘 to ensure

that the average missing proportions of 𝐘𝑗𝑘 at round 2, 3, and 4 are 20%, 35%, and 40%, respectively. The coefficients 𝛼̂∗𝑗𝑘 and

𝜓̂𝑗𝑝 are the maximum likelihood estimates of Model (5.1) using the original NHATS data.

To simulate a monotone missing data pattern, we generate the drop-out indicators for each subject. Let 𝑟𝑖𝑘 represent a drop-

out indicator for subject 𝑖 at round 𝑘 ∈ {2, 3, 4}. If subject 𝑖 drops out at round 𝑘∗, then 𝑟𝑖𝑘∗ = 1 and values for subject 𝑖 are not

observed at round 𝑘∗ and in subsequent rounds for all variables (𝑚𝑖𝑗𝑘 = 1, ∀𝑘 ≥ 𝑘∗ and ∀𝑗 ∈ {1, ..., 𝐽}). The probability that

subject 𝑖 is lost to follow-up at round 𝑘 is

𝑃 (𝑟𝑖𝑘 = 1|𝐘𝑜𝑏𝑠
𝑖 ,𝐗𝑖) = logit−1(𝛼̃0𝑘 +

𝐽
∑

𝑗=1

𝑘−1
∑

𝑘=1
𝛼̂𝑗𝑘𝑦𝑖𝑗𝑘 +

𝑃
∑

𝑝=1
𝜓̂𝑝𝑥𝑖𝑝), (5.2)

where the covariates include all of the time-varying variables that are fully observed prior to round 𝑘 and time-invariant variables.

The intercept 𝛼̃0𝑘 is set to ensure a pre-specified proportion of participants who drop out. Based on the original NHATS data, we

set the proportion of participants who start to drop out from the study at rounds 2, 3, and 4 to 20%, 15% and 10%, respectively.

Cumulatively, the proportion of individuals with missing information at round 4 is approximately 45%. The coefficients 𝛼̂𝑗𝑘 and

𝜓̂𝑝 are the maximum likelihood estimates of Model (5.2) using the drop-out indicators observed in NHATS.
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5.2 Study design

We consider three configurations with different numbers and types of incomplete variables. The variables include a binary

hospital stay status (𝐘1), a discrete bounded comorbidity index (𝐘2), a continuous BMI (𝐘3), and a discrete count number

of paid assistive devices (𝐘4). Configuration 1 assumes that 𝐘1 and 𝐘2 are incomplete and the other two variables are fully

observed. Configuration 2 assumes that in addition to 𝐘1 and 𝐘2, 𝐘3 is incomplete. Lastly, Configuration 3 assumes that all

four variables are incomplete. Because monotone missing data pattern is observed for most of the individuals in NHATS, we

evaluate the performance of the different imputation methods using 500 simulated incomplete datasets with monotone missing

data patterns for each of the three configurations. We also compare the different methods on 300 incomplete simulated datasets

with intermittent missing data patterns for Configuration 3.

For every simulated dataset, we conduct a multiple imputation procedure with 𝐵 = 5 imputations using 10 imputation

methods with different choices of imputation models described in Section 3 and 4. For the FCS-Standard method, we consider

three imputation models to impute the count variables: linear regressions, predictive mean matching, and Poisson regressions.

When applying FCS-LMM-latent, we use latent variable models for binary variables and linear models for continuous and count

variables. For the FCS-GLMM method, we specify a logit link for binary variables, an identity link for continuous variables,

and either an identity or a log link for count variables. When applying JM-MLMM-latent, we consider both homoscedastic

and heteroscedastic within-subject variance. For JM-MGLMM, we assume a logit link for binary variables, an identity link for

continuous variables, and a log link for count variables. A complete list of the different methods is provided in Table 3.

Imputing the missing data is usually performed as part of the data preparation process, and the ultimate goal is to generate

unbiased estimates of the associations and conditional associations between variables. Our simulations mimic situations in

which no specific statistical analysis is specified prior to the imputation, and the imputed datasets are used for multiple analyses.

We conduct three types of analyses: univariate generalized hierarchical model, latent growth model, and bi-variate generalized

hierarchical model. An overview of the simulation is presented in Table 4.

5.2.1 Univariate generalized linear hierarchical model

Within each imputed dataset, a multilevel logistic regression model is used to model the conditional associations between the

comorbidity index and the hospital stay status,

logit(𝑃 (𝑦𝑖1𝑘 = 1|𝜸, 𝑏0𝑖,𝐗𝑖, 𝑡𝑖𝑘, 𝑦𝑖2𝑘, 𝑦𝑖3𝑘, 𝑦𝑖4𝑘)) = 𝛾0 + 𝑏0𝑖 + 𝛾1𝑦𝑖2𝑘 + 𝛾2𝑦𝑖3𝑘 + 𝛾3𝑦𝑖4𝑘 + 𝛾4𝑡𝑖𝑘 + 𝐗𝑇
𝑖 𝜸𝑝, (5.3)

where 𝐗𝑖 comprises of five baseline covariates for subject 𝑖, 𝑡𝑖𝑘 is the round of time that individual 𝑖 is being interviewed,

𝑏0𝑖 ∼ 𝑁(0, 𝜎2𝑏 ) denotes the subject-level effects, and 𝛾𝑙, 𝑙 ∈ {0, ..., 8}, denotes a set of unknown coefficients. Let 𝛾̂ (𝑢)1 , 𝛾̂ (𝑢)2 , 𝛾̂ (𝑢)3 be
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the estimates of Model (5.3) within imputed data set 𝑢 = {1,… , 5}. and 𝜎̂2𝛾1 , 𝜎̂
2
𝛾2

, 𝜎̂2𝛾3 be their corresponding sampling variances.

The final estimates are obtained using the common combination rules described in Section 2.

5.2.2 Latent growth curve model

Researchers may be interested in the trajectory of individuals over time. For the imputed datasets in Configuration 3, we fit a

latent linear growth curve model (LGCM) on the trajectory of BMI over time. The model includes all the time-invariant variables

and the time-varying comorbidity index 𝐘2 as the predictors. The LGCM requires the data to be structured in wide format, and

it can be broken down into two latent constructs, the intercept factor and the slope factor.58 Let 𝑡𝑖 ∈ {0, 1, 2, 3} denote the round

that subject 𝑖 is observed. The adjusted LGCM is expressed by a multilevel model that consists of an intercept model, 𝜋0𝑖 and a

slope model, 𝜋1𝑖,

𝑦𝑖3𝑡 = 𝜋0𝑖 + 𝜋1𝑖𝑡𝑖 + 𝜖𝑖𝑡,

𝜋0𝑖 = 𝜂00 + 𝜂01𝑦𝑖2𝑡 + 𝐗𝑇
𝑖 𝜼0 + 𝑒0𝑖,

𝜋1𝑖 = 𝜂10 + 𝜂11𝑦𝑖2𝑡 + 𝐗𝑇
𝑖 𝜼1 + 𝑒1𝑖,

(5.4)

where the residuals of the intercept and slope models are (𝑒0𝑖, 𝑒1𝑖)𝑇 ∼ 𝑁(𝟎2,Σ), and Σ is an unknown unstructured covariance

matrix.

5.2.3 Bivariate generalized linear hierarchical model

In some studies, researchers are interested in examining the associations between multiple factors and multiple outcomes simul-

taneously.59–61 This can be achieved by jointly modeling multiple outcomes. Compared to a univariate model, joint models are

computationally more complex. We examine a joint model comprising of hospital stay (𝐘1) and paid assistive devices (𝐘4) on

datasets with imputed comorbidity index (𝐘2) and BMI (𝐘3) for Configuration 3. The bivariate multilevel generalized linear

model used in the analysis is

𝐸(𝑦𝑖1𝑘|𝐛𝑖0, 𝑦𝑖2𝑘, 𝑦𝑖3𝑘,𝐗𝑖, 𝜆10, 𝜆11, 𝜆12) = logit−1(𝜆10 + 𝑏𝑖10 + 𝜆11𝑦𝑖2𝑘 + 𝜆12𝑦𝑖3𝑘 + 𝝀1𝐗𝑖𝑘),

𝐸(𝑦𝑖4𝑘|𝐛𝑖0, 𝑦𝑖2𝑘, 𝑦𝑖3𝑘,𝐗𝑖, 𝜆20, 𝜆21, 𝜆22) = exp(𝜆20 + 𝑏𝑖20 + 𝜆21𝑦𝑖2𝑘 + 𝜆22𝑦𝑖3𝑘 + 𝝀2𝐗𝑖𝑘),

where 𝐛𝑖0 = (𝑏𝑖10, 𝑏𝑖20)𝑇 ∼ 𝑁2(𝟎,Σ𝑏),Σ𝑏 =
⎛

⎜

⎜

⎜

⎝

𝜎21 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎22

⎞

⎟

⎟

⎟

⎠

,

(5.5)

where a logit link function is applied to hospital stay and the log link function to the paid assistive devices. The subject-level

effect 𝑏𝑖0 = (𝑏𝑖10, 𝑏𝑖20)𝑇 is assumed to follow a bivariate Normal distribution with zero means and an unstructured covariance

matrix Σ𝑏. The correlation between the separate random intercepts 𝜌 represents the interdependence between the two outcomes

at the subject-level.
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5.2.4 Congeniality of Analysis Models

Congeniality62 between the different imputation methods and the three analyses varies. Not all of the imputation procedures had

the same or more general model specification compared to the three analysis models. For the univariate GLMM, methods that

include multilevel modeling encompass the analysis model, whereas methods based on the wide format data are mis-specified.

For the bivariate GLMM analysis, JM-MLMM and JM-MGLMM methods are the only two methods that encompass the analysis

model. For the latent growth curve, all imputation methods are mis-specified because time was not adjusted for in any of the

imputation models.

5.2.5 Performance assessment metrics

Estimates of the three analyses are obtained using the common combination rules described in Section 2. For each configuration

and each replication we estimate the relative bias (𝜃̂𝑚𝑒𝑡ℎ−𝜃̂𝑐𝑜𝑚𝑝)∕𝜃̂𝑐𝑜𝑚𝑝, where 𝜃̂𝑚𝑒𝑡ℎ is the estimate obtained after implementation

of multiple imputation procedure 𝑚𝑒𝑡ℎ described in Table 3, and 𝜃̂𝑐𝑜𝑚𝑝 is the estimate from the complete dataset. We record the

root of mean squared error (RMSE), the 95% interval estimate width, and whether the interval estimate covers the estimate with

complete data. Additionally, we estimate the fraction of missing information (FMI) that measures the uncertainty in the imputed

values for missing elements.8,63 For each parameter estimate, the FMI estimate is

𝜆̂𝑚 =
𝑟𝑚 + 2∕(𝑣 + 3)

𝑟𝑚 + 1
, (5.6)

where 𝑟𝑚 = (1 + 𝑚−1)𝑊𝐵

𝑈𝐵
, 𝑣 = (𝑚 − 1)(1 + 1

𝑟
)2. 𝑊𝐵 and 𝑈𝐵 are calculated using Equation (2.1), and represent the variance

between the 𝑚 complete-data estimates and the average of the 𝑚 complete-data variances, respectively. We summarize these

metrics by averaging across all replications.

5.3 Results of the univariate GLMM across all configurations

5.3.1 Relative bias of coefficients and the subject-level variance

Figure 1 presents the relative bias of regression coefficients estimates associated with the incomplete variables and the subject-

level variance estimate, 𝜎2𝑏 , for study design Configurations 1-3 with monotone missing data patterns. The first row depicts the

change in relative bias of 𝛾̂1, the conditional log-odds ratio of having a hospital stay with one unit increase in the comorbidity

index, as the number of incomplete variables increases from two to four. The boxplots of relative biases are similar for each

method as the number of incomplete predictors increases. Across Configurations 1-3, JM-GL results in the smallest mean relative

bias of −0.02. However, it has the largest variability in relative biases of 𝜆̂1 compared to other methods for all configurations.

FCS-Standard with either linear regressions (LM) or with predictive mean matching (PMM), and FCS-LMM-latent result in

comparable mean relative biases to JM-GL. Across Configurations 1-3, the averages relative bias for LM is between −0.04
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to −0.03, and −0.03 to −0.02 for PMM and FCS-LMM-latent. Imputation methods that assume Poisson regressions for the

count variables, FCS-Standard, FCS-GLMM, and JM-MGLMM have mean relative biases that are greater than −0.29. The JM-

MLMM methods generally have the second largest relative bias. Across Configurations 1-3, JM-MGLMM leads to the largest

mean relative bias of approximately −0.40.

Similar trends are observed for the relative bias of 𝛾̂2 in Configurations 2 and 3 (second row of Figure 1). The mean relative

biases produced by FCS-Standard with either LM or PMM, FCS-LMM-latent, and JM-GL are close to zero. All of the methods

show higher variability in relative biases for 𝛾̂2 compared to those observed for 𝛾̂1 and 𝛾̂3. The interquartiles (IQR) of the relative

biases of 𝛾̂2 in Configurations 2-3 are above 0.20 for all of the imputation methods, whereas the IQRs of the relative bias for 𝛾̂1

and 𝛾̂3 are around 0.05 and 0.08 on average. This is because BMI is not significantly associated with hospital stay status after

adjustment for the other covariates. In Configuration 3, the mean relative biases of 𝛾̂3 after using FCS-standard with Poisson

regressions, FCS-GLMM, and JM-MGLMM with multilevel Poisson regressions are 0.007, −0.004 and −0.124, respectively.

In contrast, the mean relative biases of 𝛾̂1 produced by these methods ranges from −0.3 to −0.4.

The relative bias of the subject-level variance, 𝜎2𝑏 , is depicted in the last row of Figure 1. All of the methods present similar

trends across all configurations. The FCS-LMM-latent has the smallest mean relative bias compared to all other methods. The

mean relative bias produced by JM-GL is close to zero; however, the variability of the relative bias across replications is the

largest. JM-MLMM performs similarly to JM-GL. The two FCS-GLMM methods lead to the largest mean relative biases for

estimating 𝜎2𝑏 compared to all other methods. Their mean relative biases across all configurations are greater than 0.17.

The relative biases of regression coefficient estimates associated with fully observed predictors are presented in Figure 2.

The relative biases of statistically significant coefficients (p-value<0.001) show similar trends for all methods. Generally, the

average values and the variability of the relative biases across replications are smaller compared to the relative biases of the

statistically insignificant coefficients (the top four rows compared to the bottom two rows). In Configuration 3, the mean relative

bias of FCS-Standard is close to zero for all fully observed covariates, except for FCS-Standard with Poisson regression. FCS-

LMM-latent has a similar performance to FCS-Standard methods other than the one with Poisson regressions. JM-MGLMM

and JM-MLMM have large relative biases for the coefficients of gender, an individual’s status of taking prescribed medicines,

and having medical bills being paid off over time.

5.3.2 The RMSE, Interval Width and Coverage

Because all of the methods have produced similar trends across all configurations, we only present the RMSEs, Interval widths,

and 95% coverage rates for all imputations methods in Configuration 3 (Table 5). Results for Configurations 1 and 2 are provided

in the Appendix. Generally, FCS-LMM-latent, FCS-Standard with either LM or PMM, and JM-GL outperform the other methods

in terms of RMSE and average interval width across all regression coefficients. FCS-LMM-latent has the smallest RMSE when
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estimating 𝛾1, 𝛾2, 𝛾7, 𝛾8, 𝛾9, and smaller RMSEs when estimating other coefficients compared to FCS-Standard with Poisson

regression, FCS-GLMM, JM-MLMM, and JM-MGLMM. Across all methods, the average interval widths for all coefficients

are similar, and the differences in RMSE are mainly driven by biases.

The interval coverages of all coefficients estimated using FCS-Standard methods, FCS-LMM-latent, and JM-GL are above

nominal. The two JM-MLMM methods produce comparable RMSE, average interval widths, and coverages to FCS-LMM-

latent only for 𝛾2 and 𝛾4. However, JM-MLMM with heteroscedastic Σ𝑒𝑖 has significantly lower than nominal coverage for 𝛾1

and 𝛾3. Compared to other methods, FCS-GLMM and JM-MGLMM with multilevel Poisson regressions have shorter interval

widths for all coefficients and comparable RMSE for most coefficients. However, they result in large RMSEs and below nominal

coverages when estimating 𝛾1 and 𝜎2𝑏 .

5.3.3 Results of GLMM for intermittent missing data pattern

In Configuration 3 with intermittent missing data, the FCS-standard methods and JM-GL perform similarly to the one observed

for the monotone missing pattern, in terms of the mean relative biases (MRB), interval coverages, and RMSE for most of the

coefficients (Appendix table A1). Comparing the monotone to the intermittent missing data pattern, we observe an increase in

the RMSE of the coefficients of the incomplete variables for FCS-LMM-latent and FCS-GLMM, and their 95% coverage rates

for the co-morbidity index coefficient decrease to 85% (FCS-LMM-latent) and 44% (FCS-GLMM). The performances of the

JM-MLMM and JM-MGLMM also deteriorate with intermittent missing data. Specifically, their average 95% coverage rates

for the coefficients of the incomplete variables, 𝛾1 − 𝛾3, drop from above nominal to below 60%. The two FCS-GLMM methods

have higher relative biases, wider interval widths, and interval estimates that do not cover the true parameter for the subject-level

variance estimate.

5.4 Results of the latent growth curve model for Configuration 3

The results of the mean relative biases, RMSE, and average interval coverages of the estimated coefficients associated with the

slope factor at each time point are presented in Table 6. Overall, the performances of the JM methods are inferior to those of

the FCS methods. Among all methods, JM-MGLMM results in the largest mean relative biases and below nominal interval

coverages for all coefficients. Among the FCS methods, the FCS-Standard methods outperform the FCS-LMM-latent and FCS-

GLMM. For the comorbidity index coefficient after round 2, FCS-Standard methods result in nominal average interval coverages,

while FCS methods with hierarchical modeling result in below nominal coverages. For intermittent missing data patterns, the

average interval coverages of FCS-LMM-latent and FCS-GLMM are below 75%. Comparing the results between monotone and

intermittent missing data patterns, we observe lower relative biases and better interval coverages for the monotone missing data

pattern for all of the FCS methods and JM-GL across all coefficient estimates. JM-MLMM with heteroscedastic variances and
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JM-MGLMM result in larger relative biases for the intercepts at rounds 3 and 4 in simulations with intermittent missing data

patterns, and their interval estimates do not cover the true intercepts.

5.5 Results of the multivariate GLMM for Configuration 3

The relative biases of the coefficients estimates of the hospital stay outcome are summarized in Figure 3. For all imputation

methods, estimates of model parameters generally have larger relative biases when using a joint analysis model compared to

the univariate model analysis. FCS-LMM-latent has the smallest mean relative bias and narrower IQR of relative biases for

all coefficients except for the coefficient of the indicator variable of having any prescribed medicine. JM-GL has comparable

performance to FCS-LMM-latent in terms of having small mean relative biases, but it has larger variability in relative biases for

all coefficients. JM-MLMM and JM-MGLMM lead to small relative biases only in coefficients that are statistically significant

(age, BMI, gender, self-rated health). FCS-Standard with either LM or Poisson regressions have higher mean relative biases for

coefficients of incomplete variables compared to their performance in the univariate analysis. FCS-Standard with PMM leads

to mean relative biases close to zero for coefficients of BMI, gender, self-rated health, and having any prescribed medicine, but

it has the widest IQRs of relative biases compared to other imputation methods.

Table 7 summarizes the RMSEs, average interval widths and coverages for the coefficients that represent the associations

between incomplete explanatory variables and the two incomplete outcomes. When estimating the conditional association

between comorbidity index and the binary outcome hospital stay, 𝜆11, FCS-GLMM with identity links for count variables, FCS-

LMM-latent, FCS-GLMM with identity links for count variables, JM-GL, and JM-MLMM have interval coverages above 95%,

with small RMSE of approximately 0.04. However, these methods produce larger RMSEs (> 0.11) and lower than nominal

interval coverages when estimating the conditional associations between the comorbidity index and the paid assistive devices,

𝜆21. FCS-Standard, FCS-GLMM and JM-MGLMM, which assume Poisson regressions for count variables, lead to small RMSE

(0.01, 0.02, 0.01, respectively) and interval coverages around nominal (96%, 92%, 98%, respectively). When estimating the con-

ditional association between BMI and the two outcomes, FCS-LMM-latent produces the smallest RMSE for 𝜆21 and 𝜆22, and it

has interval coverages above nominal. Generally, all methods lead to higher RMSE when estimating 𝜆21 and 𝜆22 compared to the

estimation of 𝜆11 and 𝜆12. This is because of the insignificant association between BMI and the number of paid assistive devices.

For the correlation estimate between the two outcomes, 𝜌, the FCS-LMM-latent and JM-MLMM have the smallest RMSE

compared to the other methods. However, all methods have relatively similar interval estimates which lead to interval coverages

that are above nominal.
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5.6 Fraction of missing information and computational time

The FMI estimates of the univariate GLMM analysis are summarized in Table 8. Generally, the average FMI estimates from

simulations with monotone missing data patterns are smaller than those with intermittent missing data patterns for all imputation

methods. When estimating the coefficients associated with incomplete variables and the subject-level variance, larger differences

between the FMI estimated from the intermittent and monotone missing data patterns are observed for FCS-based methods

and JM-MLMM with heteroscedastic variances compared to the other imputation methods. Across all simulation scenarios, the

range of the average FMI estimates is between 0.14 and 0.51. Most imputation methods have average FMI estimates between

0.20 to 0.30. Among all of the methods, JM-GL results in the smallest FMI estimates for all of the constant effects coefficients.

The average FMI estimates of the coefficients in the latent curve model when assuming a monotone missing data pattern are

smaller than those assuming the intermittent missing data pattern (Table 6). Overall, the FMI estimates for the latent growth curve

model coefficients are larger than the univariate GLMM coefficients. The FCS-based methods and JM-GL result in relatively

smaller FMI that are around 0.25 compared to the JM-MLMM with heteroscedastic variances.

We recorded the computational time of all of the 10 methods on a standard Windows PC intel Xeon Core, 2.40GHz proces-

sor. For a single imputation, the FCS-standard with the linear regressions and PMM procedures, and JM-GL required the least

computational time (less than 2s). FCS-Standard with the Poisson regressions had an average computational time of 22s. The

three JM-based methods with multivariate multilevel modeling required approximately 280s of computation time. The compu-

tational time of FCS-GLMM methods was around 800s. The most computationally intensive method was the FCS-LMM-latent,

which required several hours to complete a single imputation.

6 CASE STUDY ON SKILLED NURSING HOME ADMISSIONS

We applied the different imputation methods to study the relationship between sociodemographic factors, the number of hospital

admissions, measures of physical, cognitive abilities, and skilled nursing facilities admissions. The data are based on NHATS

Rounds 1-5, linked to data from the Center for Medicare and Medicaid (CMS). We selected 4836 participants who were enrolled

in the Medicare fee for service at baseline. Deceased participants and those who left the Medicare fee for service during the

study were assumed to be censored in contrast to missing. The proportions of missing participants because of loss to follow up

at each round were approximately 16%, 14%, 12%, and 6%.

The sociodemographic factors comprised baseline age, sex, race/ethnicity (non-Hispanic white and other), educational level

(college and higher, no school or < 9 grade, 9-12 grade and high school, and vocational training), and time-varying cohabitation

status (living alone versus not living alone) and Medicare-Medicaid dual eligibility. The cognitive ability is a 5-points Likert

scale ranging from excellent (1 point) to poor (5 points). The status of time-varying Alzheimer’s Disease and Related Dementias
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(ADRD) was defined based on the Chronic Condition Data Warehouse (CCW) algorithm. The time-varying comorbidity index

comprises a count of 20 common chronic conditions among older adults identified through the CCW algorithm.64 The function

and frailty factors include two time-varying count variables: activities of daily living (ADL) and frailty score. ADL is derived

as a count of limitations in seven daily living activities. Frailty score is defined by the sum of five criteria: exhaustion, low

activity, weakness, slowness, and shrinking. Among all explanatory variables, only cohabitation status, ADL, and frailty score

are subject to missing values.

We implemented FCS-Standard, FCS-LMM-latent, FCS-GLMM, JM-GL, JM-MLMM, and JM-MGLMM to impute the

missing data. We applied a multilevel logistic regression model to examine the relationship between SNF admission status and

sociodemographic factors adjusted for other factors that assess the physical and cognitive abilities. The results are displayed in

Figure 4. Patients who are non-Hispanic whites are associated with 75% higher conditional odds of having an SNF admission

compared to other race/ethnicity groups. For one unit increase in the number of hospital admissions, the conditional odds of

having an SNF admission will quadruple. Being diagnosed with ADRD, with a higher ADL disabilities value and a higher comor-

bidity index, especially frailty, were associated with increased conditional odds of SNF admission. Not living alone and having

Medicare-Medicaid dual eligibility were associated with decreased conditional odds of SNF. Education showed a statistically

insignificant relationship with any SNF admission after adjustment for the other covariates.

All imputation methods resulted in similar estimates of the conditional odds ratio and 95% interval estimates for the fully

observed variables. FCS-based methods and JM-based methods result in different estimates for variables with missing values.

FCS-Standard produces higher conditional odds ratios for cohabitation status and the number of hospital admissions, and it

has lower conditional odds ratios for ADL disabilities and frailty scores compared to other methods. Compared to FCS-based

methods, JM-based methods have higher conditional odds ratios for estimates of ADL disabilities and frailty scores.

7 DISCUSSION

Addressing missing data in longitudinal studies is challenging and involves advanced statistical techniques. We review existing

MI methods for incomplete longitudinal mixed data, and their implementations on widely accessible software that requires

limited additional coding. We compare these methods using simulation analyses and describe an applied example based on the

NHATS data.

Among all of the methods examined, the FCS-LMM-latent method had the best performance for the univariate and multivari-

ate multilevel modeling in terms of having small biases, relatively low FMI, and interval coverages that were at or above nominal.

FCS-Standard and JM-GL resulted in the best performance for the growth curve model analysis, and comparable performance

to FCS-LMM-latent for univariate hierarchical regression modeling, but sub-optimal performance when estimating some of the
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coefficients of multivariate multilevel modeling. Across all analyses, all imputation methods displayed better performance for

data with monotone missing data patterns compared to intermittent missing data. This is partly because our intermittent missing

data pattern is NMAR, while the monotone missing data pattern examined is MAR.

FCS-standard and JM-GL posit that the same variable measured at a different time point is a different variable, and use

conditional associations between variables measured at different time points to impute the ones that are incomplete. This process

essentially assumes an unstructured association structure between the repeated measurements. FCS-LMM-latent models adjust

for the associations between repeated measurements recorded at different time points through subject-specific intercepts. The

FCS-Standard methods are computationally more efficient and more flexible for imputing non-Normally distributed variables

compared to FCS methods with multilevel modeling. The disadvantage of FCS-Standard methods is that they can result in non-

identifiable models as the number of waves and variables within waves increases. In such cases, the FCS-twofold method41 is

suggested for building imputation models. In our simulation study, we did not implement the FCS-twofold method because the

simulation data comprise a small number of waves and variables within each wave. Possible disadvantages of the FCS-LMM-

latent method are its intensive computational time and its possible sub-optimal performance when estimating growth curve

models.

The JM-based methods with multilevel modeling, JM-MLMM-latent, and JM-MGLMM use fully observed variables as pre-

dictors and model the associations between incomplete variables through the correlations of the subject-level intercepts. This

may result in biased estimates of the association between an outcome and a predictor in the analysis model when both variables

are incomplete. In addition, the simulations display that using JM-MLMM-latent with a common covariance Σ𝑒 across subjects

had slightly better performance compared to JM-MLMM-latent with heterogeneous-covariances Σ𝑒𝑖 . The poor performance of

JM-MLMM-latent with heterogeneous-covariances may arise from the lack of convergence of the sampling algorithm. The

Gibbs sampler used by JM-MLMM-latent (random) is slow to converge with a large number of subjects and poorly estimated

subject-level variance.14

Imputation of count variables is sensitive to distributional assumptions. The simulations show that methods using Poisson

regression may produce biased estimates of the comorbidity coefficient compared to a multilevel linear model or predictive mean

matching. This may arise because many subjects have no comorbidities and the total number of comorbidities is bounded. Thus,

a Poisson or a Negative-Binomial regression does not approximate this variable well. In situations where Poisson or Negative-

Binomial hierarchical regression models approximate the data well (e.g. the number of assistive devices), our simulations show

that these methods perform similarly to multilevel linear regression or predictive mean matching. Another option for imputing

non-Normal continuous variables is to transform them so they would appear approximately Normal during the imputation step

and transform the variables back in the statistical analyses step. However, these transformations may not preserve the original

correlation structure between variables.19,65
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In univariate analysis, FCS-GLMM methods had point estimates of regression coefficients with small biases, but it resulted

in poor operating characteristics for point and interval estimates of subject-level variance when using a multilevel model for

analysis. This may arise from the computational algorithm that is being used to impute binary variables. The MCMC algorithm

that has been used to sample from a multilevel logistic regression in the micemd package samples 𝐛∗𝑖 from its marginal posterior

distribution 𝑁(0,𝚿𝑏). This can result in underestimation of the variance of 𝐛𝑖 in the imputation process which carries over to

the analysis model.

In our simulations, FCS-Standard performs well in cases with missing predictors but results in worse operating characteristics

if these incomplete variables are used as dependent variables. This finding relates to the differences between the imputation

of explanatory variables and outcomes. When both explanatory variables and outcomes are missing, Little66 suggested that

imputing outcome variables provides limited information for the subsequent regression of analysis. Von Hippel67 proposed

the multiple-imputation-deletion procedure that includes all incomplete variables in the imputation step and excludes missing

response variables values from the substantive analysis. However, this procedure was proposed when the response variables and

the subsequent analyses are defined in advance. In this work, we considered situations where no specific statistical analysis is

specified before the imputation step, and the imputed datasets can be used for multiple analyses.

Our results agree with the conclusions of Huque et al21 that FCS-Standard provides reliable estimates for univariate hierar-

chical model analysis. However, we also demonstrated that FCS-Standard methods produce higher bias for coefficient estimates

of level-1 covariates when analyzing multiple outcomes simultaneously in joint multilevel models. When imputing count vari-

ables, our results are consistent with the findings of Demirtas et al65 and Kalaycioglu et al,19 who demonstrated that assuming

a linear regression model for a non-Normally distributed variable may result in smaller biases compared to a mis-specified non-

Gaussian model. Our simulations show that imputations using either the predictive mean matching or a multilevel linear model

with rounding result in good operating characteristics of subsequent analyses.

In addition to the methods discussed in the manuscript, there are methods that can be used for imputing incomplete longitudinal

data, but require more technical coding and advanced statistical knowledge. One option is the fully Bayesian approach.19 It

requires users to specify prior on the parameters of both imputation and analysis models and implement additional coding with

software, such as STAN or PROC MCMC in SAS. The MCMC algorithm updates the parameters of the imputation model, draws

an imputation for the incomplete variable, and updates the parameters of the analysis model sequentially at each iteration. More

details on this approach can be found in Kalaycioglu et al.19 Another option is to implement nonparametric modeling techniques,

such as sequential regression trees, random forests, and Dirichlet process mixture models.68–71 These methods are beyond the

scope of this manuscript, because their implementation with multiple variables that experience missing values is not trivial and
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they require the use of advanced statistical theory and coding. A future direction of our comparative work is to consider non-

parametric imputation methods and extend the study simulations to data with more incomplete variables measured at a larger

number of waves.

In conclusion, in longitudinal data with a small number of waves and a limited number of variables, when the analysis models

comprise univariate regression models, FCS-standard is a computationally efficient method that results in precise and accurate

estimates for both single and multilevel models. However, if the analysis models comprise multivariate multilevel models FCS-

LMM-latent is a valid statistical method that produces more accurate estimates at the cost of more intensive computations.
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ID Time 𝑡1 Time 𝑡2 Time 𝑡3 Time 𝑡4
𝐘11 𝐘21 𝐘31 𝐘12 𝐘22 𝐘32 𝐘13 𝐘23 𝐘33 𝐘14 𝐘24 𝐘34

1 𝑦111 𝑦121 𝑦131 𝑦112 𝑦122 𝑦132 ? ? ? ? ? ?
2 𝑦211 𝑦221 𝑦231 𝑦212 𝑦222 𝑦232 𝑦213 𝑦223 𝑦233 ? ? ?
3 𝑦311 𝑦321 𝑦331 𝑦312 𝑦322 𝑦332 ? 𝑦323 ? 𝑦314 𝑦324 𝑦334

TABLE 1 Example of data arranged in the wide format

ID 𝐘1 𝐘2 𝐘3 Time

1 𝑦111 𝑦121 𝑦131 𝑡1
1 𝑦112 𝑦122 𝑦132 𝑡2
1 ? ? ? 𝑡3
1 ? ? ? 𝑡4
2 𝑦211 𝑦221 𝑦231 𝑡1
2 𝑦212 𝑦222 𝑦232 𝑡2
2 𝑦213 𝑦223 𝑦233 𝑡3
2 ? ? ? 𝑡4
3 𝑦311 𝑦321 𝑦331 𝑡1
3 𝑦312 𝑦322 𝑦332 𝑡2
3 ? 𝑦323 ? 𝑡3
3 𝑦314 𝑦324 𝑦334 𝑡4

TABLE 2 Example of data arranged in the long for-
mat

Approach Data format Method Imputation models

FCS Imputation model for binary variables Imputation model for count variables

Wide FCS-Standard (LM) Logistic regression Linear regression
FCS-Standard (PMM) Logistic regression Predictive mean matching
FCS-Standard (Poisson) Logistic regression Poisson regression

Long FCS-LMM-latent Multilevel linear regression on latent variables Multilevel linear regression
FCS-GLMM (Gaussian) Multilevel logistic regression Multilevel linear regression
FCS-GLMM (Poisson) Multilevel logistic regression Multilevel Poisson regression

JM Wide JM-GL General location model

Long JM-MLMM-latent (common) Multivariate multilevel linear model with latent variables and homoscedastic within-subject variance
JM-MLMM-latent (random) Multivariate multilevel linear model with latent variables and heteroscedastic within-subject variance
JM-MGLMM Multivariate multilevel generalized linear model using a logit and log link for binary, count variables

TABLE 3 Summary of imputation methods for mixed-type longitudinal data

Configuration Incomplete variables Missing Pattern Statistical Analysis

1 Hospital stay (Binary)
Comorbidity index (Count) Monotone Univariate GLMM

2
Hospital stay (Binary)
Comorbidity index (Count)
BMI (Continuous)

Monotone Univariate GLMM

3

Hospital stay (Binary)
Comorbidity index (Count)
BMI (Continuous)
Number of devices paid for caring (Count)

Monotone
Intermittent

Univariate GLMM
Growth Curve Model
Bivariate GLMM

TABLE 4 Summary of simulation design
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Estimates Metrics
FCS-
Standard
(LM)

FCS-
Standard
(PMM)

FCS-
Standard
(Poisson)

FCS-
LMM-
latent

FCS-
GLMM
(Gauss.)

FCS-
GLMM
(Poisson)

JM-
General
Location

JM-
MLMM
(common)

JM-
MLMM
(random)

JM-
MGLMM

Intercept
𝛾̂𝑐𝑜𝑚𝑝0 = −3.89∗∗

RMSE 0.150 0.154 0.149 0.156 0.255 0.237 0.176 0.131 0.165 0.125
Width 1.157 1.136 1.127 1.110 1.039 1.033 1.094 1.131 1.144 1.055
Coverage(%) 100 99 100 100 99 100 100 100 100 100

Comorbidity
Index
𝛾̂𝑐𝑜𝑚𝑝1 = 0.38∗∗

RMSE 0.021 0.020 0.136 0.019 0.025 0.112 0.020 0.031 0.071 0.152
Width 0.117 0.118 0.117 0.117 0.110 0.105 0.113 0.117 0.113 0.100
Coverage(%) 99 100 0 100 100 0 99 100 22 0

BMI
𝛾̂𝑐𝑜𝑚𝑝2 = −0.02∗

RMSE 0.003 0.004 0.004 0.003 0.004 0.003 0.004 0.004 0.006 0.005
Width 0.029 0.029 0.028 0.028 0.026 0.026 0.027 0.028 0.030 0.027
Coverage(%) 100 100 100 100 100 100 100 100 99 100

Paid assistive
devices
𝛾̂𝑐𝑜𝑚𝑝3 = 0.36∗∗

RMSE 0.026 0.022 0.021 0.026 0.019 0.018 0.025 0.019 0.052 0.048
Width 0.149 0.152 0.150 0.150 0.142 0.141 0.144 0.149 0.151 0.143
Coverage(%) 100 100 100 99 100 100 99 100 87 92

Age
𝛾̂𝑐𝑜𝑚𝑝4 = 0.11∗∗

RMSE 0.014 0.014 0.015 0.016 0.018 0.015 0.019 0.017 0.018 0.012
Width 0.112 0.112 0.111 0.111 0.104 0.101 0.107 0.112 0.111 0.106
Coverage(%) 100 100 100 100 100 100 100 100 100 100

Gender
𝛾̂𝑐𝑜𝑚𝑝5 = 0.28∗∗

RMSE 0.044 0.041 0.073 0.056 0.048 0.072 0.053 0.040 0.054 0.090
Width 0.310 0.311 0.306 0.307 0.282 0.282 0.299 0.307 0.304 0.287
Coverage(%) 100 100 99 100 100 96 100 100 100 96

Self-rated health
𝛾̂𝑐𝑜𝑚𝑝6 = 0.20∗∗

RMSE 0.024 0.024 0.052 0.024 0.021 0.049 0.028 0.022 0.040 0.072
Width 0.162 0.162 0.164 0.157 0.146 0.146 0.155 0.157 0.158 0.148
Coverage(%) 100 99 95 100 100 93 100 100 98 60

Have med. bill paid
off overtime
𝛾̂𝑐𝑜𝑚𝑝7 = 0.34∗

RMSE 0.064 0.066 0.060 0.048 0.058 0.066 0.131 0.093 0.102 0.067
Width 0.483 0.483 0.480 0.473 0.444 0.435 0.462 0.473 0.475 0.451
Coverage(%) 100 100 100 100 100 100 93 99 99 100

Took prescribed med.
𝛾̂𝑐𝑜𝑚𝑝8 = 0.30

RMSE 0.095 0.096 0.129 0.071 0.096 0.156 0.110 0.155 0.206 0.183
Width 0.702 0.714 0.692 0.666 0.647 0.644 0.667 0.684 0.674 0.650
Coverage(%) 100 100 100 100 100 100 99 100 99 98

Time
𝛾̂𝑐𝑜𝑚𝑝9 = 0.10∗∗

RMSE 0.020 0.022 0.048 0.016 0.027 0.023 0.021 0.016 0.017 0.018
Width 0.109 0.108 0.108 0.104 0.102 0.105 0.099 0.105 0.106 0.100
Coverage(%) 99 100 66 100 96 98 99 100 100 100

Random effect
𝜎̂2𝑏𝑐𝑜𝑚𝑝 = 1.13∗∗

RMSE 0.048 0.044 0.070 0.037 0.202 0.220 0.050 0.035 0.040 0.107
Width 0.235 0.239 0.233 0.238 0.217 0.212 0.221 0.241 0.240 0.220
Coverage(%) 98 99 95 100 0 0 94 100 99 56

TABLE 5 The root mean squared error (RMSE), average interval width and empirical coverage of the 95% CI of coefficients
estimates and subject-level variance estimate for the univariate analysis in Configuration 3 with the monotone missing data
pattern. The incomplete predictors are marked in bold.
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Slope
Estimates Metrics

FCS-Standard
(LM)

FCS-Standard
(PMM)

FCS-Standard
(Poisson)

FCS-LMM-
latent

FCS-GLMM
(Gaussian)

FCS-GLMM
(Poisson)

JM-General
Location

JM-MLMM
(common)

JM-MLMM
(random)

JM-
MGLMM

Inter. Mono. Inter. Mono. Inter. Mono. Inter. Mono. Inter. Mono. Inter. Mono. Inter. Mono. Inter. Mono. Inter. Mono. Inter. Mono.

Round 1
Intercept

MRB -0.03 0.00 -0.02 0.00 -0.03 -0.01 0.11 0.06 0.11 0.06 0.11 0.06 -0.03 -0.01 0.11 0.05 0.16 0.32 0.89 0.05
RMSE 0.21 0.16 0.21 0.17 0.21 0.16 0.22 0.15 0.22 0.15 0.22 0.15 0.21 0.16 0.22 0.15 0.31 0.56 1.63 0.15
Coverage(%) 74 85 77 87 72 86 60 85 60 84 58 88 71 83 61 88 64 26 13 93
FMI 0.40 0.32 0.47 0.46 0.38 0.31 0.31 0.24 0.29 0.26 0.29 0.25 0.26 0.23 0.30 0.25 0.44 0.68 0.08 0.34

Round 1
Comorbidity

MRB -0.43 0.08 -0.48 0.40 -2.15 1.96 -4.01 -1.57 -4.14 -1.54 -4.07 -2.87 -0.48 -0.15 -1.19 -0.05 -1.57 4.84 -12.53 -2.47
RMSE 0.03 0.02 0.03 0.02 0.04 0.04 0.06 0.03 0.06 0.03 0.06 0.05 0.03 0.02 0.03 0.02 0.11 0.20 0.19 0.04
Coverage(%) 100 100 100 100 94 94 70 98 65 98 44 82 97 100 100 100 93 97 0 96
FMI 0.42 0.31 0.42 0.31 0.45 0.53 0.37 0.26 0.35 0.28 0.38 0.50 0.25 0.23 0.38 0.28 0.84 0.92 0.14 0.41

Round 2
Intercept

MRB 0.01 0.01 0.02 0.00 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.02 0.46 0.37 4.75 0.23
RMSE 0.18 0.16 0.19 0.16 0.18 0.16 0.12 0.12 0.12 0.12 0.12 0.12 0.18 0.16 0.12 0.13 0.94 0.76 9.50 0.48
Coverage(%) 64 71 84 81 66 71 83 79 85 79 85 80 60 66 83 78 09 11 0 5
FMI 0.42 0.36 0.74 0.59 0.43 0.34 0.31 0.28 0.34 0.28 0.32 0.29 0.30 0.27 0.34 0.29 0.93 0.89 0.24 0.45

Round 2
Comorbidity

MRB -0.23 -0.08 -0.24 0.01 -0.86 0.41 -1.34 -0.61 -1.37 -0.59 -1.39 -1.06 -0.23 -0.12 -0.45 -0.30 -0.36 1.37 -2.31 -0.93
RMSE 0.03 0.02 0.04 0.02 0.05 0.03 0.08 0.04 0.08 0.04 0.08 0.06 0.04 0.02 0.04 0.03 0.13 0.23 0.14 0.06
Coverage(%) 99 100 98 100 77 95 39 94 38 96 9 62 91 100 99 99 89 96 9 63
FMI 0.52 0.33 0.53 0.33 0.60 0.64 0.44 0.32 0.44 0.34 0.52 0.64 0.32 0.25 0.47 0.34 0.90 0.95 0.24 0.51

Round 3
Intercept

MRB -0.04 -0.01 -0.02 -0.03 -0.04 -0.01 0.17 0.10 0.17 0.10 0.17 0.10 -0.04 -0.01 0.17 0.10 1.09 0.74 9.47 0.52
RMSE 0.20 0.14 0.20 0.14 0.19 0.14 0.30 0.20 0.31 0.20 0.30 0.21 0.20 0.14 0.30 0.20 1.85 1.26 16.04 0.89
Coverage(%) 62 76 76 83 62 75 13 43 14 44 19 43 52 70 18 45 0 0 0 0
FMI 0.55 0.39 0.77 0.62 0.53 0.39 0.39 0.35 0.40 0.34 0.41 0.34 0.36 0.29 0.41 0.36 0.97 0.94 0.22 0.50

Round 3
Comorbidity

MRB -0.21 -0.11 -0.22 -0.05 -0.66 0.13 -1.01 -0.50 -1.03 -0.48 -1.07 -0.79 -0.21 -0.13 -0.44 -0.36 -0.31 0.76 -0.99 -0.73
RMSE 0.04 0.02 0.04 0.02 0.07 0.03 0.10 0.05 0.10 0.05 0.10 0.08 0.05 0.03 0.05 0.04 0.16 0.24 0.10 0.07
Coverage(%) 95 99 97 99 54 97 16 81 17 82 1 39 82 99 90 92 84 93 46 25
FMI 0.59 0.37 0.60 0.37 0.71 0.73 0.49 0.35 0.49 0.37 0.60 0.70 0.36 0.29 0.52 0.37 0.92 0.96 0.31 0.54

Round 4
Intercept

MRB -0.03 -0.02 -0.04 -0.03 -0.02 -0.01 0.10 0.02 0.10 0.02 0.10 0.02 -0.03 -0.02 0.09 0.02 1.04 0.60 9.99 0.45
RMSE 0.33 0.21 0.33 0.21 0.33 0.21 0.24 0.14 0.24 0.14 0.24 0.14 0.34 0.22 0.23 0.14 2.03 1.19 19.36 0.88
Coverage(%) 62 78 70 87 63 79 72 92 72 91 69 92 54 70 73 91 1 5 0 0
FMI 0.61 0.40 0.76 0.70 0.61 0.43 0.42 0.32 0.42 0.32 0.41 0.33 0.40 0.30 0.43 0.32 0.95 0.88 0.16 0.45

Round 4
Comorbidity

MRB -0.32 -0.16 -0.33 -0.10 -0.81 0.02 -1.06 -0.50 -1.09 -0.47 -1.14 -0.82 -0.30 -0.17 -0.48 -0.42 -0.29 0.80 -1.18 -0.76
RMSE 0.05 0.03 0.06 0.03 0.08 0.04 0.10 0.05 0.11 0.05 0.11 0.08 0.06 0.03 0.05 0.05 0.18 0.26 0.12 0.07
Coverage(%) 93 99 94 99 58 97 23 87 22 88 3 46 76 97 92 93 84 93 50 35
FMI 0.61 0.39 0.63 0.39 0.74 0.74 0.49 0.34 0.50 0.36 0.59 0.65 0.36 0.30 0.53 0.35 0.91 0.95 0.35 0.52

TABLE 6 The mean relative bias (MRB), the root mean squared error (RMSE), average empirical coverage of the 95% CI, aver-
age FMI estimates of slope factor’s coefficients estimates for the latent growth curve analysis in Configuration 3 with intermittent
(Inter.) and monotone (Mono.) missing data patterns.
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Estimates Metrics
FCS-
Standard
(LM)

FCS-
Standard
(PMM)

FCS-
Standard
(Poisson)

FCS-
LMM-
latent

FCS-
GLMM
(Gauss.)

FCS-
GLMM
(Poisson)

JM-
General
Location

JM-
MLMM
(common)

JM-
MLMM
(random)

JM-
MGLMM

Outcome 1: Hospital stay (Yes)

Comorbidity
𝜆̂𝑐𝑜𝑚𝑝11 = 0.44∗∗

RMSE 0.064 0.160 0.143 0.043 0.038 0.113 0.070 0.046 0.059 0.193
Width 0.216 0.890 0.520 0.482 0.768 0.614 0.596 1.140 0.633 0.339
Coverage 81 88 85 100 100 80 100 100 100 35

BMI
𝜆̂𝑐𝑜𝑚𝑝12 = −0.02∗∗

RMSE 0.006 0.008 0.006 0.004 0.005 0.005 0.006 0.005 0.007 0.007
Width 0.032 0.062 0.049 0.042 0.055 0.052 0.043 0.074 0.055 0.039
Coverage 99 100 100 100 100 100 100 100 100 99

Outcome 2: Paid assistive devices

Comorbidity
𝜆̂𝑐𝑜𝑚𝑝21 = 0.086∗∗

RMSE 0.016 0.028 0.013 0.020 0.019 0.016 0.020 0.021 0.109 0.011
Width 0.051 0.054 0.057 0.052 0.048 0.05 0.049 0.051 0.256 0.049
Coverage 87 44 96 81 76 92 75 79 78 98

BMI
𝜆̂𝑐𝑜𝑚𝑝22 = 0.003

RMSE 0.003 0.002 0.003 0.002 0.002 0.002 0.003 0.002 0.005 0.003
Width 0.012 0.014 0.012 0.012 0.012 0.012 0.013 0.011 0.021 0.013
Coverage 100 100 99 100 100 100 97 97 99 99

Correlation between the two outcomes

𝜌̂ = 0.30
RMSE 0.038 0.037 0.037 0.035 0.045 0.051 0.044 0.035 0.039 0.045
Width 0.231 0.226 0.230 0.230 0.252 0.241 0.220 0.243 0.233 0.221
Coverage 100 100 100 100 100 98 100 100 100 97

TABLE 7 The root mean squared error (RMSE), average interval width and empirical coverage of the 95% CI of coefficients
estimates of the incomplete predictors and the correlation estimate for the joint analysis in Configuration 3.

Estimates Missing
pattern

FCS-
Standard
(LM)

FCS-
Standard
(PMM)

FCS-
Standard
(Poisson)

FCS-
LMM-
latent

FCS-
GLMM
(Gauss.)

FCS-
GLMM
(Poisson)

JM-
General
Location

JM-
MLMM
(common)

JM-
MLMM
(random)

JM-
MGLMM

Intercept Monotone 0.28 0.29 0.31 0.23 0.23 0.22 0.19 0.23 0.29 0.23
Intermittent 0.32 0.30 0.31 0.26 0.27 0.26 0.17 0.25 0.35 0.23

Comorbidity Index Monotone 0.26 0.27 0.51 0.23 0.23 0.37 0.19 0.23 0.36 0.38
Intermittent 0.37 0.38 0.48 0.33 0.36 0.47 0.20 0.34 0.45 0.36

BMI Monotone 0.28 0.27 0.30 0.24 0.24 0.23 0.19 0.23 0.33 0.23
Intermittent 0.33 0.33 0.33 0.27 0.30 0.32 0.18 0.28 0.46 0.25

Paid assistive
devices

Monotone 0.24 0.30 0.23 0.21 0.19 0.18 0.16 0.21 0.37 0.24
Intermittent 0.49 0.51 0.47 0.41 0.40 0.39 0.26 0.37 0.48 0.31

Age Monotone 0.27 0.25 0.28 0.21 0.24 0.24 0.17 0.22 0.23 0.22
Intermittent 0.25 0.25 0.25 0.20 0.26 0.26 0.14 0.21 0.21 0.20

Gender Monotone 0.27 0.26 0.28 0.21 0.24 0.24 0.18 0.22 0.22 0.21
Intermittent 0.27 0.25 0.26 0.20 0.27 0.28 0.15 0.22 0.22 0.19

Self-rated health Monotone 0.30 0.30 0.35 0.22 0.24 0.26 0.19 0.23 0.26 0.23
Intermittent 0.27 0.27 0.30 0.23 0.27 0.29 0.16 0.24 0.28 0.21

Have med. bill paid
off overtime

Monotone 0.23 0.23 0.23 0.17 0.22 0.22 0.16 0.20 0.20 0.20
Intermittent 0.23 0.23 0.22 0.18 0.26 0.26 0.11 0.19 0.20 0.18

Took prescribed med. Monotone 0.34 0.34 0.35 0.23 0.25 0.25 0.23 0.23 0.23 0.23
Intermittent 0.36 0.35 0.35 0.26 0.28 0.29 0.20 0.29 0.31 0.23

Time Monotone 0.32 0.32 0.36 0.26 0.30 0.30 0.21 0.29 0.28 0.25
Intermittent 0.36 0.36 0.37 0.29 0.32 0.32 0.18 0.33 0.33 0.27

Subject-level
variance

Monotone 0.36 0.35 0.37 0.33 0.22 0.23 0.24 0.35 0.35 0.28
Intermittent 0.44 0.45 0.47 0.40 0.31 0.33 0.23 0.41 0.43 0.33

TABLE 8 The fraction of missing information estimated for the univariate GLMM analysis in Configuration 3.
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8.JM-MLMM-Latent(common)

9.JM-MLMM-Latent(random)

10.JM-MGLMM

FIGURE 1 Relative bias of regression coefficients estimates associated with the incomplete covariates and the random effect
estimate. Each column represents a simulation setting. From left to right, the column corresponds to Configuration 1 to Config-
uration 3.
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FIGURE 2 Relative bias of regression coefficients estimates associated with the fully observed predictors. Each column repre-
sents a simulation setting. From left to right, the column corresponds to Configuration 1 to Configuration 3.
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Having medical bill Took prescribed medicine Round

Age Gender (Male) Self-Rated Health

Intercept Comorbidity BMI
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10.JM-MGLMM

Response variable (Y1): Hospital Stay

FIGURE 3 Relative bias of regression coefficients estimates for hospital stay.
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Comorbidity index Education < 9th grade 
 vs. College

9th -12th grade 
 vs. College

High school/trade school 
 vs. College

Number of 
 hospital admissions ADL disabilities Frailty score 

 Pre-frail vs. Robust
Frailty score 

 Frail vs. Robust

White/Non-Hispanic 
 vs. Others

Not living alone 
 vs. Living alone

Eligible to Medicaid 
 vs. Not eligible

ADRD 
 Yes vs. No

1.100 1.125 1.150 1.175 0.50 0.75 1.00 0.6 0.8 1.0 1.2 0.8 0.9 1.0 1.1 1.2 1.3

3.8 3.9 4.0 4.1 4.2 1.15 1.20 1.25 1.30 1.5 2.0 2.0 2.5 3.0

1.4 1.6 1.8 2.0 0.3 0.4 0.5 0.6 0.7 0.8 0.5 0.7 0.9 1.1 1.3 1.5 1.7

JM-MGLMM

JM-MLMM

JM-GL(Restrictive)

FCS-GLMM

FCS-LMM(Latent)

FCS-Standard(PMM)

JM-MGLMM

JM-MLMM

JM-GL(Restrictive)

FCS-GLMM

FCS-LMM(Latent)

FCS-Standard(PMM)

JM-MGLMM

JM-MLMM

JM-GL(Restrictive)

FCS-GLMM

FCS-LMM(Latent)

FCS-Standard(PMM)

Odds Ratio

FIGURE 4 Odds ratios estimates of sociodemographic factors, the number of hospital admissions, measures of physical and
cognitive abilities on skilled nursing facilities admissions for different imputation methods.
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APPENDIX

A SIMULATION RESULTS OF UNIVARIATE MODEL ANALYSIS FOR CONFIGURATIONS 3

WITH INTERMITTENT MISSING DATA PATTERN

B SIMULATION RESULTS OF UNIVARIATE MODEL ANALYSIS FOR CONFIGURATIONS 1

AND 2
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Estimates Metrics
FCS-
Standard
(LM)

FCS-
Standard
(PMM)

FCS-
Standard
(Poisson)

FCS-
LMM-
latent

FCS-
GLMM
(Gauss.)

FCS-
GLMM
(Poisson)

JM-
General
Location

JM-
MLMM
(common)

JM-
MLMM
(random)

JM-
MGLMM

Intercept
𝛾̂𝑐𝑜𝑚𝑝0 = −3.89∗∗

MRB -0.018 -0.031 0.080 -0.045 0.039 0.086 0.153 0.101 0.170 0.224
RMSE 0.170 0.176 0.166 0.201 0.236 0.219 0.252 0.480 0.535 0.255
Width 1.170 1.154 1.149 1.123 1.027 1.009 1.075 1.116 1.170 1.026
Coverage(%) 100 100 100 99 100 99 97 76 67 99

Comorbidity
Index
𝛾̂𝑐𝑜𝑚𝑝1 = 0.38∗∗

MRB 0.046 0.011 0.027 -0.099 0.002 -0.027 0.050 -0.001 -0.197 -0.332
RMSE 0.026 0.029 0.152 0.046 0.060 0.141 0.027 0.041 0.116 0.239
Width 0.127 0.127 0.115 0.122 0.112 0.106 0.113 0.124 0.120 0.089
Coverage(%) 98 96 0 85 44 0 95 90 3 0

BMI
𝛾̂𝑐𝑜𝑚𝑝2 = −0.02∗

MRB -0.036 -0.050 -0.401 -0.112 -0.153 -0.371 -0.017 -0.099 -0.301 -0.634
RMSE 0.004 0.004 0.005 0.004 0.004 0.006 0.005 0.010 0.010 0.011
Width 0.030 0.030 0.029 0.029 0.026 0.026 0.027 0.029 0.033 0.024
Coverage(%) 100 100 99 100 100 99 99 94 98 62

Paid assistive
devices
𝛾̂𝑐𝑜𝑚𝑝3 = 0.36∗∗

MRB 0.031 0.089 0.185 -0.089 -0.247 -0.154 -0.140 0.085 -0.126 0.120
RMSE 0.041 0.036 0.035 0.043 0.025 0.025 0.048 0.026 0.077 0.122
Width 0.183 0.185 0.181 0.172 0.159 0.158 0.154 0.167 0.167 0.146
Coverage(%) 96 99 100 94 100 100 88 99 63 1

Age
𝛾̂𝑐𝑜𝑚𝑝4 = 0.11∗∗

MRB -0.013 -0.018 -0.001 -0.043 -0.053 -0.047 -0.007 -0.120 -0.132 0.057
RMSE 0.015 0.015 0.014 0.025 0.017 0.014 0.017 0.029 0.025 0.016
Width 0.111 0.111 0.110 0.109 0.098 0.098 0.106 0.110 0.108 0.102
Coverage(%) 100 100 100 100 100 100 100 99 99 100

Gender
𝛾̂𝑐𝑜𝑚𝑝5 = 0.28∗∗

MRB -0.051 -0.052 -0.241 -0.254 -0.212 -0.298 -0.088 -0.268 -0.350 -0.458
RMSE 0.040 0.041 0.077 0.076 0.067 0.088 0.052 0.081 0.102 0.132
Width 0.311 0.307 0.304 0.299 0.272 0.272 0.293 0.305 0.301 0.280
Coverage(%) 100 100 98 100 99 94 100 99 95 62

Self-rated health
𝛾̂𝑐𝑜𝑚𝑝6 = 0.20∗∗

MRB -0.002 0.011 0.354 0.000 0.000 0.217 0.014 0.068 0.287 0.668
RMSE 0.022 0.022 0.073 0.018 0.019 0.047 0.026 0.023 0.061 0.135
Width 0.160 0.160 0.159 0.157 0.141 0.140 0.151 0.159 0.161 0.141
Coverage(%) 100 100 66 100 100 94 99 100 87 0

Have med. bill paid
off overtime
𝛾̂𝑐𝑜𝑚𝑝7 = 0.34∗

MRB -0.035 -0.046 0.010 -0.204 -0.108 -0.072 -0.033 -0.233 -0.195 0.092
RMSE 0.059 0.059 0.062 0.048 0.051 0.055 0.093 0.059 0.076 0.091
Width 0.481 0.481 0.473 0.469 0.424 0.419 0.453 0.478 0.473 0.444
Coverage(%) 100 100 100 100 100 100 97 100 100 100

Took prescribed med.
𝛾̂𝑐𝑜𝑚𝑝8 = 0.30

MRB 0.031 0.039 0.429 0.081 0.261 0.495 -0.129 -0.247 0.081 1.055
RMSE 0.104 0.101 0.165 0.065 0.111 0.168 0.215 0.105 0.081 0.331
Width 0.722 0.722 0.710 0.677 0.632 0.630 0.658 0.682 0.683 0.637
Coverage(%) 100 99 98 100 100 99 97 100 100 47

Time
𝛾̂𝑐𝑜𝑚𝑝9 = 0.10∗∗

MRB 0.009 0.016 -0.191 -0.091 -0.143 -0.260 -0.083 0.510 0.473 -0.594
RMSE 0.017 0.018 0.025 0.016 0.029 0.021 0.024 0.017 0.020 0.019
Width 0.110 0.111 0.110 0.105 0.105 0.104 0.098 0.109 0.108 0.102
Coverage(%) 100 100 99 100 95 99 97 100 99 100

Random effect
𝜎̂2𝑏𝑐𝑜𝑚𝑝 = 1.13∗∗

MRB -0.027 -0.027 -0.041 -0.018 -0.297 -0.305 -0.010 0.007 -0.017 -0.099
RMSE 0.053 0.055 0.063 0.042 0.338 0.346 0.067 0.038 0.042 0.120
Width 0.256 0.257 0.257 0.247 0.232 0.232 0.219 0.250 0.253 0.225
Coverage(%) 98 97 96 100 0 0 90 100 100 53

TABLE A1 The mean relative bias (MRB), the root mean squared error (RMSE), average interval width and empirical coverage
of the 95% CI of coefficients estimates and subject-level variance estimate for the univariate analysis in Configuration 3 with
intermittent missing data pattern. The incomplete predictors are marked in bold.



Cao ET AL 39

Estimates Metrics
FCS-
Standard
(LM)

FCS-
Standard
(PMM)

FCS-
Standard
(Poisson)

FCS-
LMM-
latent

FCS-
GLMM
(Gauss.)

FCS-
GLMM
(Poisson)

JM-
General
Location

JM-
MLMM
(common)

JM-
MLMM
(random)

JM-
MGLMM

Intercept
𝛾̂𝑐𝑜𝑚𝑝0 = −3.89∗∗

RMSE 0.133 0.134 0.144 0.115 0.164 0.145 0.159 0.384 0.349 0.153
Width 1.156 1.143 1.125 1.119 1.047 1.041 1.078 1.116 1.116 1.121
Coverage 100 100 100 100 100 100 100 91 96 100

Comorbidity
Index
𝛾̂𝑐𝑜𝑚𝑝1 = 0.38∗∗

RMSE 0.020 0.018 0.132 0.018 0.027 0.110 0.018 0.024 0.075 0.150
Width 0.117 0.118 0.117 0.115 0.108 0.106 0.114 0.115 0.185 0.101
Coverage 100 99 0 100 98 0 99 100 75 0

BMI
𝛾̂𝑐𝑜𝑚𝑝2 = −0.02∗

RMSE 0.004 0.004 0.006 0.004 0.004 0.005 0.005 0.006 0.005 0.005
Width 0.029 0.028 0.028 0.028 0.026 0.026 0.027 0.028 0.028 0.028
Coverage 100 100 99 100 100 100 99 100 100 100

Paid assistive
devices
𝛾̂𝑐𝑜𝑚𝑝3 = 0.36∗∗

RMSE 0.026 0.024 0.024 0.055 0.023 0.022 0.035 0.022 0.021 0.022
Width 0.151 0.153 0.149 0.147 0.142 0.141 0.141 0.150 0.148 0.148
Coverage 99 100 100 84 100 100 96 100 100 100

Age
𝛾̂𝑐𝑜𝑚𝑝4 = 0.11∗∗

RMSE 0.015 0.016 0.015 0.014 0.016 0.014 0.018 0.024 0.022 0.013
Width 0.113 0.113 0.111 0.110 0.103 0.099 0.106 0.113 0.111 0.109
Coverage 100 100 100 100 100 100 100 100 100 100

Gender
𝛾̂𝑐𝑜𝑚𝑝5 = 0.28∗∗

RMSE 0.039 0.040 0.065 0.052 0.050 0.072 0.053 0.084 0.099 0.077
Width 0.31 0.309 0.305 0.305 0.287 0.279 0.295 0.309 0.307 0.302
Coverage 100 100 100 100 100 99 100 99 98 99

Self-rated health
𝛾̂𝑐𝑜𝑚𝑝6 = 0.20∗∗

RMSE 0.021 0.021 0.053 0.023 0.016 0.046 0.028 0.027 0.051 0.081
Width 0.161 0.163 0.159 0.159 0.147 0.144 0.155 0.160 0.178 0.157
Coverage 100 100 96 100 100 97 99 100 94 49

Have med. bill paid
off overtime
𝛾̂𝑐𝑜𝑚𝑝7 = 0.34∗

RMSE 0.065 0.064 0.065 0.054 0.058 0.060 0.099 0.058 0.060 0.078
Width 0.484 0.479 0.478 0.475 0.443 0.436 0.461 0.488 0.481 0.471
Coverage 100 100 100 100 100 100 98 100 100 100

Took prescribed med.
𝛾̂𝑐𝑜𝑚𝑝8 = 0.30

RMSE 0.078 0.084 0.135 0.066 0.089 0.144 0.099 0.197 0.148 0.197
Width 0.701 0.724 0.689 0.674 0.648 0.638 0.669 0.686 0.697 0.674
Coverage 100 100 99 100 100 100 100 97 100 99

Time
𝛾̂𝑐𝑜𝑚𝑝9 = 0.10∗∗

RMSE 0.02 0.021 0.046 0.015 0.022 0.020 0.018 0.018 0.017 0.019
Width 0.104 0.107 0.112 0.103 0.101 0.103 0.099 0.104 0.108 0.104
Coverage 100 99 75 100 99 100 98 99 99 98

Random effect
𝜎̂2𝑏𝑐𝑜𝑚𝑝 = 1.13∗∗

RMSE 0.042 0.040 0.060 0.029 0.204 0.222 0.044 0.041 0.037 0.041
Width 0.239 0.237 0.240 0.237 0.213 0.218 0.218 0.237 0.236 0.237
Coverage 100 100 99 100 0 0 99 99 100 100

TABLE B2 The root mean squared error (RMSE), average interval width and empirical coverage of the 95% CI of coefficients
estimates and subject-level variance estimate for the univariate analysis in Configuration 1. The incomplete predictors are marked
in bold.
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Estimates Metrics
FCS-
Standard
(LM)

FCS-
Standard
(PMM)

FCS-
Standard
(Poisson)

FCS-
LMM-
latent)

FCS-
GLMM
(Gauss.)

FCS-
GLMM
(Poisson)

JM-
General
Location

JM-
MLMM
(common)

JM-
MLMM
(random)

JM-
MGLMM

Intercept
𝛾̂𝑐𝑜𝑚𝑝0 = −3.89∗∗

RMSE 0.138 0.140 0.139 0.154 0.239 0.228 0.175 0.483 0.520 0.222
Width 1.167 1.131 1.129 1.125 1.047 1.027 1.096 1.111 1.134 1.117
Coverage 100 100 100 100 98 100 99 71 67 100

Comorbidity
Index
𝛾̂𝑐𝑜𝑚𝑝1 = 0.38∗∗

RMSE 0.018 0.019 0.133 0.015 0.025 0.108 0.017 0.023 0.044 0.15
Width 0.119 0.118 0.116 0.117 0.108 0.103 0.113 0.115 0.130 0.102
Coverage 100 100 0 100 99 0 100 100 89 0

BMI
𝛾̂𝑐𝑜𝑚𝑝2 = −0.02∗

RMSE 0.004 0.004 0.005 0.003 0.004 0.003 0.004 0.007 0.008 0.008
Width 0.029 0.028 0.028 0.028 0.026 0.026 0.027 0.029 0.030 0.027
Coverage 100 100 100 100 99 100 100 99 97 98

Paid assistive
devices
𝛾̂𝑐𝑜𝑚𝑝3 = 0.36∗∗

RMSE 0.024 0.022 0.023 0.054 0.022 0.020 0.041 0.020 0.019 0.022
Width 0.150 0.150 0.149 0.147 0.145 0.143 0.143 0.149 0.152 0.15
Coverage 100 100 100 91 100 100 93 100 100 100

Age
𝛾̂𝑐𝑜𝑚𝑝4 = 0.11∗∗

RMSE 0.016 0.015 0.015 0.015 0.019 0.016 0.017 0.027 0.026 0.013
Width 0.113 0.112 0.112 0.112 0.103 0.101 0.107 0.111 0.112 0.109
Coverage 100 100 100 100 100 100 100 99 100 100

Gender
𝛾̂𝑐𝑜𝑚𝑝5 = 0.28∗∗

RMSE 0.041 0.039 0.071 0.053 0.049 0.074 0.047 0.090 0.096 0.078
Width 0.313 0.315 0.306 0.304 0.285 0.279 0.298 0.314 0.304 0.303
Coverage 100 100 99 100 100 98 99 98 96 98

Self-rated health
𝛾̂𝑐𝑜𝑚𝑝6 = 0.20∗∗

RMSE 0.021 0.023 0.051 0.023 0.017 0.045 0.025 0.025 0.036 0.074
Width 0.162 0.163 0.162 0.159 0.15 0.146 0.154 0.158 0.161 0.156
Coverage 100 100 93 100 100 97 100 100 99 55

Have med. bill paid
off overtime
𝛾̂𝑐𝑜𝑚𝑝7 = 0.34∗

RMSE 0.051 0.058 0.049 0.050 0.053 0.055 0.096 0.055 0.058 0.077
Width 0.485 0.493 0.476 0.473 0.435 0.440 0.459 0.480 0.485 0.466
Coverage 100 100 100 100 100 100 96 100 100 100

Took prescribed med.
𝛾̂𝑐𝑜𝑚𝑝8 = 0.30

RMSE 0.084 0.087 0.138 0.067 0.096 0.153 0.130 0.229 0.205 0.189
Width 0.731 0.708 0.703 0.667 0.654 0.639 0.657 0.698 0.687 0.676
Coverage 100 100 100 100 100 100 99 95 95 99

Time
𝛾̂𝑐𝑜𝑚𝑝9 = 0.10∗∗

RMSE 0.019 0.018 0.044 0.014 0.022 0.022 0.017 0.017 0.017 0.017
Width 0.106 0.105 0.110 0.104 0.104 0.103 0.099 0.104 0.104 0.105
Coverage 99 100 80 100 100 100 100 100 100 100

Random effect
𝜎̂2𝑏𝑐𝑜𝑚𝑝 = 1.13∗∗

RMSE 0.041 0.040 0.065 0.036 0.200 0.218 0.047 0.043 0.041 0.046
Width 0.237 0.242 0.235 0.240 0.214 0.215 0.219 0.236 0.240 0.236
Coverage 100 100 96 100 0 0 97 100 99 100

TABLE B3 The root mean squared error (RMSE), average interval width and empirical coverage of the 95% CI of coefficients
estimates and subject-level variance estimate for the univariate analysis in Configuration 2. The incomplete predictors are marked
in bold.
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